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Abstract—In this paper, we propose a Bayesian non-parametric
signal classification approach for spectrum sensing in cognitive
radios (CR’s). The proposed classification approach is based
on the Dirichlet process mixture model (DPMM) that allows
inferring the number and types of signals from their spectral
and cyclic properties. The proposed algorithm is completely
autonomous and does not require any prior knowledge of the
existing signals or the number of distinct signal classes. We
assume that the cluster parameters are drawn from a mixture
model, where each mixture component parameterizes a specific
observation model, including both Gaussian and non-Gaussian
models. By using the Gibbs sampling, we estimate the observation
model and cluster parameters that best fit the observed data.
Given N data points, under certain regularity conditions, we
derive an upper bound for the mean-squared error (MSE) in
estimating the clusters means. A Bayesian prediction method
is also developed to estimate the probability distribution of the
data points. The proposed algorithm is applied to detect and
classify WiFi and Bluetooth signals in the ISM band. Simulation
results validate the proposed classification approach and show its
robustness against channel impairments such as Rayleigh channel
fading.

Index Terms—Chinese restaurant process, cognitive radio,
cyclostationary detection, Dirichlet process mixture model, Gibbs
sampling, nonparametric Bayesian statistics, unsupervised learn-
ing.

I. INTRODUCTION

In recent years, the concept of cognitive radios (CR’s)
has been proposed for dynamic spectrum access (DSA). This
application was motivated by an FCC report published in 2002
which claimed that a large portion of the spectrum bands is
not being utilized most of the time [1]. Thus, many research
studies have been focused on using CR’s to improve the
spectrum utilization by considering CR’s as secondary users
that try to access the primary channels whenever possible.

However, as it is noted by Mitola [2], the aim of CR’s is
to improve the quality of information (QoI) of wireless users.
DSA is a possible means to achieve this goal. However, it is
not the goal itself [2]. Along this line, the authors in [3], [4]
proposed a CR architecture that was referred to as the Radiobot
aimed at achieving: 1) self-learning, 2) self-configuration and
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3) spectrum awareness [3], [4].
In order to be aware of its environment, a CR should be

able to sense and classify the observed signals. Several feature
detection and signal classification methods have been proposed
in the literature. For example, [5] proposed a cyclostationarity-
based feature detection and a hidden Markov model (HMM)-
based signal classification for CR’s. However, this technique
requires prior training with ideal feature vectors for each signal
type, which may not be possible if the CR is operating in
an unknown environment without any prior knowledge of
the existing signal types. Other classification methods have
also been proposed based on neural networks [6] and support
vector machines [7], but they also required training data
to initialize the classifiers’ parameters. On the other hand,
feature classification can be performed based on parametric
classification approaches such as the Gaussian mixture model
(GMM) or K-means algorithm that do not require training
data. However, these techniques assume a fixed number of
classes, which may not be known in an alien RF environment
in which the number of active wireless systems is unknown a
priori. As an alternative, the authors in [8] proposed to use the
X-means algorithm [9] for unsupervised signal classification
when the number of clusters is unknown. This approach is
based on the K-means algorithms but approximates the number
of clusters X by maximizing either the Bayesian information
criterion (BIC) or the Akaike information criterion (AIC)
[9]. However, similarly to the K-means algorithm, the X-
means algorithm assumes spherical Gaussian data, which does
not offer enough flexibility when dealing with observations
having an arbitrary noise distribution [9]. Moreover, the K-
means algorithm can only converge to a local minimum of
the distortion measure and its performance heavily depends
on the choice of initial center points [9].

To resolve these drawbacks, we resort to non-parametric
classification approaches. In particular, the Dirichlet process
mixture model (DPMM) that assumes no prior knowledge
of the number of clusters [10]. Note that, the DPMM-
based classifier is considered to be a Bayesian non-parametric
method in the sense of allowing the structure of the model
(i.e. number of clusters) to grow with the complexity of the
data [10]–[14]. However, the individual observations of the
DPMM can still be drawn from parametric distributions. The
DPMM-based classifier can infer the number of clusters (or
mixture components) from the data itself, making it a suitable
candidate for unsupervised and autonomous classifiers. This
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approach has been previously applied for galaxy clustering
[15], speaker diarization [16], speaker adaptation [17], image
segmentation [18] and compressive sensing [19]. In this paper,
we propose the DPMM classification approach to infer the
number and types of wireless systems that are sensed by a CR
in an unknown environment. The non-parametric nature of the
DPMM allows for an arbitrary number of clusters and helps
the CR to learn and act autonomously in any RF environment.

Note that, most of the existing DPMM classifiers assume
Gaussian observation models, which may not accurately rep-
resent complex observations encountered in wireless systems
[10], [17]–[23]. In this paper, hence, we extend the DPMM
framework to both Gaussian and non-Gaussian observation
models by allowing the cluster parameters to be drawn from
a mixture model where each mixture component is used to
parameterize a particular observation model, including both
Gaussian and non-Gaussian distributions. By applying the
Gibbs sampling, we determine the observation model that best
fits each cluster, while estimating the corresponding parame-
ters. To the best of our knowledge, this is the first DPMM that
assumes such a framework, thus offering flexibility in handling
arbitrary observation models, as opposed to both K-means
and X-means algorithms which assume spherical Gaussian
observations [9].

In this paper, we develop the DPMM classifier, as described
above, and derive the posterior distribution of the clusters’
parameters. The Gibbs sampling is used to sample from
the posterior distribution and to update the DPMM hyper-
parameters. A Bayesian prediction method is developed to
predict the distribution of future feature points, thus allowing
the CR to form an RF mapping of the sensed spectrum. We
derive an upper bound for the mean-squared error (MSE) in
estimating the clusters means, and show that under certain
regularity conditions, this upper bound is proportional to
logN/N , where N is the number of observed feature points.
The proposed algorithm is applied to a cyclostationarity-based
feature detection method that was proposed in [21], [22] to
provide observations data to the DPMM classifier. The simu-
lation results show that the proposed DPMM-based classifier is
able to accurately identify/classify different RF transmissions,
in particular, in the ISM band. By comparing our proposed
DPMM-based classification algorithm to both K-means and
X-means algorithms of [8] and [9], we show, through sim-
ulations, that the DPMM-based algorithm achieves superior
performance. The efficiency of the DPMM-based classifier
stems from the flexibility of the non-parametric DPMM
framework and the accuracy of the adopted cyclostationarity-
based feature extraction method [21], [22]. Furthermore, since
all the DPMM hyper-parameters are updated based on the
posterior distributions, the DPMM can accurately approximate
the observed model.

The remainder of this paper is organized as follows: Section
II gives a description of the DPMM. In Section III, we describe
the Bayesian classification method and in Section IV we derive
the predictive distribution of the observed feature points. The
convergence of the algorithm is discussed in Section V and we
derive the MSE of the cluster means in Section VI. Simulation
results are presented in Section VII and we conclude the paper

in Section VIII. Note that, throughout this paper, we use bold
characters to refer to vector and matrix quantities.

II. THE DIRICHLET PROCESS

A Dirichlet process DP (α0, G0) is defined to be the distri-
bution of a random probability measure G over a measurable
space (Θ,B), such that, for any finite measurable partition
(A1, · · · , Ar) of Θ, the random vector (G(A1), · · · , G(Ar))
is distributed as a finite dimensional Dirichlet distribution with
parameters (α0G0(A1), · · · , α0G0(Ar)) such that:

(G(A1), · · · , G(Ar)) ∼ Dir(α0G0(A1), · · · , α0G0(Ar)) ,
(1)

where α0 > 0. A vector (X1, · · · , Xn) ∼ Dir(a1, · · · , an)
is said to be distributed according to a Dirichlet distribution
with parameters (a1, · · · , an) if:

f (x1, · · · , xn|a1, · · · , an) =
Γ (

∑n
i=1 ai)∏n

i=1 Γ(ai)

n∏
i=1

xai−1
i , (2)

subject to
∑n

i=1 xi = 1, with xi > 0, ai > 0, for all i =
1, · · · , n.

We denote G ∼ DP (α0, G0) to represent the proba-
bility measure G that is drawn from the Dirichlet process
DP (α0, G0). In other words, G is a random probability
measure whose distribution is given by the Dirichlet process
DP (α0, G0) [10]. That is, the realizations G of a Dirichlet
process are random probability distributions, in contrast with
random variables or random processes that are usually as-
sumed in probabilistic models.

A. Construction of the Dirichlet Process

Since the discrete probability distribution G is drawn from a
Dirichlet process, its construction requires special approaches
to determine its random parameters. Teh [10] describes several
ways of constructing G. A first method is a direct approach
that constructs the random probability distribution G based on
the stick-breaking method. However, this method is impractical
since it involves the evaluation of an infinite sum [10].
Interested readers may refer to [10] for a detailed discussion
about this method.

A second more practical approach does not define G explic-
itly. Instead, it characterizes the distribution of the drawings
θ of G, given a certain realization G of DP (α0, G0). This
method constructs G by using the Chinese Restaurant Process
(CRP) [10]. The CRP metaphor considers a restaurant with
an unbounded number of tables. A customer entering the
restaurant is denoted by θi, whereas the distinct tables at which
the customers sit are denoted by ϕk. The i-th customer sits
at the table indexed by ϕk, with a probability proportional to
the number of customers mk already seated there, and sits at
a new table with a probability proportional to α0 [10]. This
construction provides a practical approach to sample the values
θ from a distribution G that is drawn from a certain Dirichlet
process.

Formally, we let θ1, θ2, · · · to be independent identically
distributed (i.i.d.) random variables distributed according to G.
These random variables are conditionally independent, given
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Fig. 1. The Dirichlet process.

G. However, if G is integrated out, θ1, θ2, · · · are no more
conditionally independent and can be characterized as:

θi|θ1, · · · , θi−1, α0, G0 ∼
K∑

k=1

mk

i− 1 + α0
δϕk+

α0

i− 1 + α0
G0 ,

(3)
where {ϕk}Kk=1 are the K distinct values of θi’s and mk is the
number of θi’s that are equal to ϕk. Note that, this conditional
distribution is not necessarily discrete since G0 might be a
continuous distribution (in contrast with G which is discrete
with probability 1). The θi’s that are drawn from G exhibit a
clustering behavior since a certain value of θi is most likely
to re-occur with a nonnegative probability (due to the point
mass functions in the conditional distribution). Moreover, the
number of distinct θi values can be infinite, in general, since
there is a nonnegative probability that the new θi value is
distinct than the previous θ1, · · · , θi−1. This conforms with the
definition of G as a probability mass function over an infinite
discrete set. Since, given G, θi’s are distributed according to
G, we denote θi|G ∼ G.

B. Dirichlet Process Mixture Model (DPMM)

As we have discussed earlier, in Bayesian classification
models, a non-parametric classifier assumes that the number of
classes (or clusters) can grow with the complexity of the data,
as opposed to parametric classifiers which assume that the
number of clusters is fixed and known, a priori [10]–[14]. The
Dirichlet process makes a perfect candidate for non-parametric
classification problems through the Dirichlet process mixture
model (DPMM). The DPMM assumes random observations
yi’s that are drawn from a certain mixture model in which the
mixture components are identified with the random variables
θi’s drawn from a distribution G from a certain Dirichlet
process. This implies that the mixture model may consist
of infinitely many mixture components since G is a discrete
probability distribution with an infinite support set. Hence, the
DPMM endows a non-parametric prior on the parameters of
the mixture model [10]. Thus, a DPMM can be defined as

follows:  G ∼ DP (α0, G0)
θi|G ∼ G
yi|θi ∼ fθi(yi)

. (4)

III. DATA CLUSTERING BASED ON THE DPMM AND THE
GIBBS SAMPLING

Consider a sequence of observations y1:N , {yi}Ni=1,
where yi , [yi,1, · · · , yi,d]T ∈ Rd, and assume that these
observations are drawn from a mixture model. If we do not
know the number of mixture components, it is reasonable to
assume a non-parametric model, such as the DPMM which
allows the number of mixture components to increase with
the complexity of the data. Thus, let us assume that the
mixture components θi are drawn from a G ∼ DP (α0, G0),
for G =

∑∞
k=1 πkδϕk , where ϕk are the unique values of θi

and πk their corresponding probabilities.
The problem is to estimate the mixture component θ̂i for

each observation yi, for all i ∈ {1, · · · , N}. In particular,
we are interested in finding maximum a posteriori probability
(MAP) estimates of θi (i = 1, · · · , N ), given the observations
y1:N . However, it is hard to find analytical MAP estimates
of θi’s since the joint distribution of (θ1, · · · , θN ), given
y1:N , is unknown. As an alternative, we may use Monte
Carlo methods to compute the MAP estimates by sampling
from the posterior distribution of θi’s, given y1:N [24],
[25]. In particular, in situations that we have the conditional
distribution of each θi, given the other parameters {θj}j ̸=i,
as in (3), we can construct a Markov chain Monte Carlo
(MCMC) algorithm based on Gibbs sampling to draw samples
from the joint posterior distribution of (θ1, · · · , θN ) [26]. The
Gibbs sampling algorithm starts with arbitrary estimates of
θi’s and draws samples from the conditional distribution of
each parameter θi, given the other parameters {θj}j ̸=i, where
{θj}j ̸=i take the values of their most recent estimates [26].
It can be shown that these samples converge in probability to
the actual posterior distribution of (θ1, · · · , θN ), thus leading
to an efficient method for estimating θi’s [15].

By assuming a DPMM framework, the posterior distribu-
tion of θi|{θj}j ̸=i,y1:N can be computed as in (5), where
f(yi) =

∫
θ
fθ(yi)G0(θ)dθ is the marginal distribution of yi,

assuming a prior G0(θ), and fθ(yi) , f(yi|θi = θ), for all
θ’s, where θi stands for the parameter of observation yi [23].
In other words, the assumption of an underlying DPMM for
the cluster parameters θi’s implies that θi is equal to θj with
probability qj , or it is a new value drawn according to the
conditional distributions f(θi|yi) with probability q0. Note
that, the required posterior distribution f(θi|yi) can easily
be obtained if θi has a conjugate prior for the likelihood
fθi(yi)

1. In this case, G0(θi) and f(θi|yi) will belong to the
same family of distributions. In particular, if both the prior
distribution G0(θi) and the likelihood function fθi(yi) are

1If the posterior distribution p(θ|x) is in the same family as the prior
probability distribution p(θ), the prior and posterior are then called conjugate
distributions, and the prior is called a conjugate prior for the likelihood. All
the members of the exponential family have conjugate priors. In particular, the
normal, gamma, exponential, Wishart and inverse-Wishart distributions have
conjugate priors [27].
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θi|{θj}j ̸=i,y1:N

 = θj with prob. qj =
fθj (yi)

α0f(yi)+
∑N
j=1,j ̸=i fθj (yi)

∼ f(θi|yi) with prob. q0 = α0f(yi)

α0f(yi)+
∑N
j=1,j ̸=i fθj (yi)

. (5)

Gaussian, then the posterior distribution f(θi|yi) will also be
Gaussian. Thus, most of the literature on DPMM problems
assumes conjugate priors [10], [18], [23]. In the following, we
first present the Gibbs sampling algorithm for the multivariate
Gaussian case and then generalize the model to a mixture of
Gaussian and non-Gaussian observations.

A. DPMM-based clustering with a Gaussian observation
model

A Gibbs sampling algorithm for estimating the parameters
θi of a DPMM was proposed in [23], which showed that the
outcomes of the developed algorithm converge, in probability,
to those of the posterior distribution of (θ1, · · · , θN ), given
y1:N . However, [23] assumed that the prior distribution G0(θi)
can be chosen as a uniform distribution, presuming prior
knowledge of the range of the observations, which, in general,
may not be available. In addition, it also assumed that the
observations y1:N are distributed according to a standard
Gaussian distribution, given the parameters θi’s. This assump-
tion was relaxed in [15] in which a Bayesian method was
proposed to estimate both mean and variance of the Gaussian
observation model from the observations y1:N .

In this section, we follow an approach similar to [15]
in developing a multi-dimensional Bayesian non-parametric
estimator for DPMM’s. In the next section, we generalize this
method to non-Gaussian observation models.

Let us assume a sequence of observations y1:N from
a DPMM that are normally distributed given the mixture
component parameters θ1:N , {θi}Ni=1. We may thus de-
note yi|θi ∼ N (µi,Vi), where θi = (µi,Vi) for i ∈
{1, · · · , N}. The prior distribution G0(θi) can be modeled as
the normal/inverse-Wishart conjugate prior such that V−1

i ∼
W (S/2, s/2)2 and µi|Vi ∼ N(m, τVi), for some mean
m and scale factor τ > 0. Note that, this is the most
commonly used conjugate prior distribution for the mean and
the covariance matrix of a multivariate Gaussian observation
model3. Furthermore, a large value of τ implies a large
dispersion among the cluster means, whereas parameter m
is a prior estimate of these means [15].

On the other hand, the parameter s reflects the confidence
in the value of the covariance matrix Vi. That is, a large
value of s corresponds to the case where Vi is believed to be
approximately equal to its prior estimate S. However, a small
value of s corresponds to the case where little knowledge is
available about Vi [15].

The posterior distribution f(θi|yi) is a bivariate
normal/inverse-Wishart distribution whose components

2The Wishart distribution W (V, n) is characterized by a positive definite
scale matrix V and n denoting the degrees of freedom.

3Note that, families of conjugate priors are not unique. In particular, the
set of all probability distributions is always a conjugate prior.

are [15]:

V−1
i ∼ W

(
Si

2
,
1 + s

2

)
,

µi|Vi ∼ N (xi, XVi) ,

where Si = S+ (yi−m)(yi−m)T

1+τ , X = τ
1+τ and xi =

m+τyi
1+τ .

The corresponding weights q0 and qj in (5) can shown to be
[15]:

q0 ∝ α0c(s)

|M|1/2

(
1 +

(yi −m)TM−1(yi −m)

s

)−(1+s)/2

and

qj ∝
1√
2|Vj |

e
−(yj−µj)

TV
−1
j

(yj−µj)

2 ,

for j ∈ {1, · · · , N}, j ̸= i and subject to
∑N

j=1,j ̸=i qj = 1,
with M = 1+τ

s S and c(s) = Γ( 1+s
2 )Γ( s2 )s

−1/2.
We may use the above posterior marginal distribution to

perform Gibbs sampling. The resulting number of distinct
values of θ1:N (denoted by {ϕk}Kk=1) is then an estimate
of the number of components (or clusters) in the mixture
model. Algorithm 1 summarizes this DPMM classification
procedure based on the Gibbs sampling. Upon convergence,
the observations yi’s that share identical values of θi’s are
assumed to belong to the same cluster.

Algorithm 1 Clustering algorithm.

Initialize θ̂i = yi, ∀i ∈ {1, · · · , N}.
while Convergence condition not satisfied do

for i = shuffle {1, · · · , N} do
Use Gibbs sampling to obtain θ̂i from the posterior
distribution in (5).

end for
end while

B. DPMM-based clustering with a mixture prior for θi
Most of the existing DPMM-based classification problems

assume that the observations y1:N are normally distributed,
given the cluster parameters θi’s [10], [18], [23]. In this
paper, however, we relax this condition to allow yi|θi to be
non-Gaussian distributed. In modifying the likelihood fθi(yi),
however, we also need to adapt the prior distribution of θi
accordingly so that it is a conjugate prior for the assumed
likelihood. This is necessary since if we were to loose the
conjugate property of the prior, a closed-form expression for
the posterior distribution of θi, as in (5), may not be possible.
For example, the Gaussian prior is conjugate for the Gaussian
likelihood. However, if we were to use a different likelihood
function, such as the log-normal distribution, the Gaussian
prior is no more conjugate for this particular likelihood. In
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this case, a possible conjugate prior would be the Gamma dis-
tribution [28]. Thus, modifying the likelihood fθi(yi) should
be done in conjunction with adapting the prior distribution of
θi, accordingly.

Hence, we allow the likelihood function fθi(yi) to be-
long to one of the L different distributions (e.g. Gaussian,
or Gamma or log-normal, etc.). The parameter θi denotes
the distribution parameter and we let Zi ∈ {1, · · · , L} to
denote the distribution index, which specifies the type of the
distribution fθi(yi). Clearly, θi can be modeled as a mixture
model of L components where each component is a random
parameter drawn from a certain set Sl, for l = 1, · · · , L. The
set Sl contains all possible parameters of the l-th distribution
model. By following a Bayesian approach, we can estimate
the parameters θi’s, given the observations yi’s, by using (5).

We denote a discrete prior distribution for Zi such that
P{Zi = l} , κl, for l = 1, · · · , L. Given a certain observation
model Zi = l for the observation yi, we denote the conditional
prior distribution of θi as θi|{Zi = l} ∼ G

(l)
0 (θi), where

θi ∈ Sl.
We define f

(l)
θ (yi) , f(yi|θi = θ, Zi = l), for all

θ ∈ Sl, to be the likelihood function of the observation
yi, given that Zi = l. Thus, we can write yi|{θi, Zi} ∼
f
(1)
θi

(yi)I{Zi=1}+ · · ·+ f (L)
θi

(yi)I{Zi=L}, where the indicator
function IA is defined as IA = 1 if the event A is true, and 0
otherwise. Note that, the distribution of yi|{θi, Zi} is defined
for θi ∈ SZi such that θi is a valid parameter for the Zi-th
distribution model.

Under the above formulation, the posterior distribution of
the parameter θi, given the observation yi, is defined over the
set S ,

∪L
l=1 Sl such that:

f(θi|yi) =
L∑

l=1

κ̂l,if(θi|yi, Zi = l) , (6)

where

κ̂l,i , P{Zi = l|yi}

=
κlf(yi|Zi = l)∑L

l′=1 κl′f(yi|Zi = l′)

=
κl

∫
θ∈Sl

f
(l)
θ (yi)G

(l)
0 (θ)dθ∑L

l′=1 κl′
∫
θ∈Sl′

f
(l′)
θ (yi)G

(l′)
0 (θ)dθ

, (7)

and f(θi|yi, Zi = l) = 0 if θi /∈ Sl. In general, if a closed-
form expression can not be obtained for (7), κ̂l,i can be
evaluated numerically.

The expression in (6) implies that θi can be sampled from
the posterior distribution f (θi|yi, Zi = l) with a probability
κ̂l,i, for l = 1, · · · , L. In other words, given an observation
yi, the distribution index Zi is first sampled from the discrete
set {1, · · · , L}, with corresponding probabilities {κ̂l,i}Ll=1.
Given the sampled value of Zi, θi can be sampled from SZi
using the posterior distribution f(θi|yi, Zi). Furthermore, if
f(θi|yi, Zi = l) and G(l)

0 (θi) are conjugate for the likelihood
f
(l)
θi

(yi), ∀l ∈ {1, · · · , L}, then the posterior in (6) can be
expressed in closed-form. If not, the posterior may not be
derived in closed-form. However, the approach can still be
used with numerical methods.

The marginal distribution of the observation yi can be
computed as:

f(yi) =

L∑
l=1

κl

∫
θ∈Sl

f
(l)
θ (yi)G

(l)
0 (θ)dθ . (8)

By substituting (6) and (8) in (5), we obtain the posterior
distribution of θi|{θj}j ̸=i,y1:N .

An Example (Clustering with a mixture of Gamma, log-
normal and Gaussian observation models):

For example, let us assume that yi = [yi,1, · · · , yi,d]T ∈ Rd

and L = 3, so that each yi|θi is a mixture of Gaussian, Gamma
and log-normal distributions. For analytical tractability, the
likelihood functions of the observations yi’s are selected so
that the prior and posterior distributions of θi are conjugate.
We also assume that the elements of yi’s are independent in
the case of non-Gaussian observation models.

First, as in Section III-A, we may define S1 , Rd×Rd×d to
be the set of possible parameters of the Gaussian likelihood
function corresponding to θi|{Zi = 1} , (µi,Vi). In this
case, the likelihood f

(1)
θi

(yi), the posterior f(θi|yi, Zi = 1),
the marginal

∫
θ∈S1

f
(1)
θ (yi)G

(1)
0 (θ)dθ and the prior G(1)

0 (θi)
can be computed as described in Section III-A.

Next, we define S2 , Rd, such that θi|{Zi = 2} , a, where
a = [a1, · · · , ad]T are the shape parameters of a Gamma
distributed likelihood function (assuming fixed rate parameters
{bk}dk=1) such that:

f
(2)
θ (yi) =

d∏
k=1

bakk
Γ(ak)

yak−1
i,k e−bkyi,k , (9)

where we have let θ = a, i.e. yi,k|{θi = θ, Zi = 2} ∼
Ga(ak, bk) and are i.i.d. Note that, (9) denotes the likelihood
of observation yi joining a cluster with parameter θ. In this
case, to preserve the conjugate property, the prior distribution
of a is assumed to be equal to:

G
(2)
0 (θi) = G

(2)
0 (a) =

d∏
k=1

1

J(a0, b0, bk, c0)
.
aak−1
0 bc0akk

Γ(ak)b0
,

(10)
where a0, b0 and c0 are the corresponding hyper-parameters
and J(a0, b0, bk, c0) ,

∫∞
0

ax−1
0 b

c0x

k

Γ(x)b0
dx is the normalization

term. The posterior distribution of θi can be obtained as in
[28] and can be shown to be equal to:

f(θi|yi, Zi = 2) = f(a|yi) =

=
d∏

k=1

1

J(a0yi,k, b0 + 1, bk, c0 + 1)
.
(a0yi,k)

ak−1
b
(c0+1)ak
k

Γ(ak)b0+1
.

The marginal distribution of y can thus be computed as:

f(yi|Zi = 2) =

=

d∏
k=1

∫ ∞

0

bzk
Γ(z)

yz−1
i,k e−bkyi,k

az−1
0 bc0zk

Γ(z)b0

[∫ ∞

0

at−1
0 bc0tk

Γ(t)b0
dt

]−1

dz .

Note that, in practice, the above marginal distribution of y can
be estimated using numerical methods since it has to be only
evaluated for a particular value of yi.
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Finally, we define S3 , Rd such that θi|{Zi = 3} , ρ,
where ρ = [ρ1, · · · , ρd]T are the log-scale parameters of a log-
normal likelihood function (assuming fixed shape parameters
{ξk}dk=1) such that:

f
(3)
θ (yi) =

d∏
k=1

1

yi,k
√
2πξ2k

e
− (ln yi,k−ρk)

2

2ξ2
k , (11)

where we let θ = ρ, i.e. yi,k|{θi = θ, Zi = 3} ∼ lnN(ρk, ξ
2
k)

and are i.i.d. The prior distribution of ρ is assumed to be equal
to:

G
(3)
0 (θi) = G

(3)
0 (ρ) =

d∏
k=1

1√
2πξ20,k

e
− (ρk−ρ0,k)

2

2ξ2
0,k , (12)

i.e. ρk ∼ N
(
ρ0,k, ξ

2
0,k

)
, where ρ0,k and ξ0,k (k = 1, · · · , d)

are the corresponding hyper-parameters. The posterior distri-
bution of θi is equal to [28]:

f(θi|yi, Zi = 3) = f(ρ|yi) =

d∏
k=1

1√
2πψk

e
− (ρk−νk)

2

2ψk ,

(13)
i.e. ρk|yi,k ∼ N (νk, ψk), where νk =

ξ20,kρ
2
0,k+ξ2kyi,k

ξ20,k+ξ2k
and

ψk = ξ20,k + ξ2k. The marginal distribution of y can thus be
computed as:

f(yi|Zi = 3) =

=
d∏

k=1

1

2πyi,k
√
ξ2kξ

2
0,k

∫ ∞

−∞
e
− (ln yi,k−ρ)

2

2ξ2
k e

− (ρ−ρ0,k)
2

2ξ2
0,k dρ .

which can again be estimated numerically.
Once we have the marginal posterior distributions char-

acterized as above, we can apply the Gibbs sampling as in
Algorithm 1 to find the best observation model that fits each
cluster.

C. Prior and posterior distributions for α0

In [29], it was shown that the posterior distribution for α0

can be represented in a simple conditional form, given a certain
class of prior distributions for α0 [14]. In particular, if the prior
distribution of α0 follows the Gamma distribution, such that
α0 ∼ Ga(a, b) with shape a > 0 and scale b > 04, then
the conditional posterior distribution of α0 may be expressed
as a mixture of two Gamma distributions, where the mixing
parameter follows a Beta distribution, such that:

α0|x,K ∼ πxGa (a+K, b− log (x)) +

+ (1− πx)Ga (a+K − 1, b− log (x)) ,(14)

where K > 1 is the number of clusters and x|α0,K ∼
Beta (α0 + 1, N) with Beta denoting the Beta distribution
[14], [29]. The mixing parameter πx is defined such that:

πx
1− πx

=
a+K − 1

N (b− log (x))
, (15)

4It is very hard to estimate a and b from real-world data. However, it is
noticed in [14] that small values of a and b lead to nearly similar values of the
α probability density, thus resulting in a lack of variability in the distribution
of θi.

It should be noted that α0 and K should be sampled at each
iteration of the Gibbs sampling and that the prior distribution
of K is given by [29]:

P (K|α0, N) = cN (K)N !αK
0

Γ(α0)

Γ(α0 +N)
, (16)

where cN (K) = P (K|α0 = 1, N) can be computed using
recurrence formulae for Stirling numbers [29]. Note that this
prior distribution depends only on the number of data points
N and on the concentration parameter α0.

Moreover, for large N , the number of clusters generated
by this model can be approximated as K = X + 1, where
X is a Poisson random variable with mean α0 (γ + log (N))
and γ ≈ 0.5772156649 being the Euler constant [29]. This
approximation is useful if the number of clusters K is much
smaller than the number of data points N , when N is large
[29]. In wireless applications, we may assume that different
wireless systems form different clusters. The data points within
each cluster may represent the signals corresponding to that
system (cluster). If the signals are detected frequently w.r.t.
the operation time of a certain system, a large number of
feature points will be observed in a single cluster, which
makes the number of feature points N to grow at a much
faster rate compared to K, thus justifying the use of above
approximation.

On the other hand, in order to compute the posterior
distribution of K, given the observed data points, the authors in
[15], [29] proposed a Monte Carlo approach. This method was
based on counting the number of distinct mixture components
at each Gibbs iteration and updating the posterior of K
accordingly. Hence, the empirical posterior probability of K
can be approximated by the histogram of the number of
mixture components that are encountered throughout the Gibbs
sampling iterations.

IV. BAYESIAN PREDICTION (OR DENSITY ESTIMATION)
OF THE OBSERVATION VARIABLES

Upon observing and classifying N feature points, a CR
may need to predict the occurrence of a particular observa-
tion yN+1 in the next time step. The predictive probability
distribution of the random observation YN+1 can help to
achieve this goal by using the previously observed features.
Such predictive distribution can be useful in decision-making
applications, allowing CR’s to coordinate their actions with
other wireless users by predicting their behavior.

The posterior distribution of YN+1, given the observa-
tions y1:N and the cluster parameters θ1:N , is denoted by
P (YN+1|θ1:N ,y1:N ). Since {Yi}Ni=1 are i.i.d., given θ1:N ,
we have P (YN+1|θ1:N ,y1:N ) = P (YN+1|θ1:N ) which
may be evaluated as

∫
P (YN+1|θN+1) dP (θN+1|θ1:N ) [15].

According to [15], the probability distribution of YN+1, given
the components θ1:N , can be computed as:

(YN+1|θ1:N ) ∼ α0

α0 +N
f(yN+1)+

1

α0 +N

N∑
i=1

fθi (yN+1) ,

(17)
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where f(yN+1) is the marginal distribution of YN+1 which
was defined in (8). We may re-write (17) as:

(YN+1|θ1:N ) ∼ α0

α0 +N
f(yN+1)+

N

α0 +N

K∑
k=1

nk
N
fθk (yN+1) ,

(18)
where nk is the number of data points in cluster k ∈
{1, · · · ,K}. Note that (18) implies that the observation YN+1

is drawn from a mixture of a Student t-distribution and an
observation mixture model with mixing parameters α0

α0+N and
n

α0+N , respectively. In wireless applications, it is reasonable
to assume that a detected signal may belong to a previously
detected system (cluster) with a probability proportional to the
number of signals observed from that system. However, since
we assume that the number of systems (clusters) is unknown,
a priori, a signal belonging to a new system may arise
with a probability proportional to α0. Thus, the probability
distribution in (17) may be used to predict the occurrence of
a certain signal, given past information.

Since past information may consist of only noisy ob-
servations y1:N , in the following, we show the predictive
distribution of Yn+1, given the past observations y1:N . Thus,
we integrate out the cluster parameters θ1:N from the posterior
distribution of YN+1 since these parameters are not fully
observable by the classifier. Hence, the Bayesian prediction,
or density estimation, problem can be solved by evaluating the
unconditional predictive distribution:

P (YN+1|y1:N ) =

∫
P (YN+1|θ1:N ) dP (θ1:N |y1:N ) .

(19)
The complexity of the above expression stems from the
inherent complexity of the posterior P (θ1:N |y1:N ). However,
by using the Monte Carlo approach of [15], [23], it is possible
to obtain an approximation for this density function, iteratively.
For a given m and τ parameters, the estimated density function
is given by [15]:

P (YN+1|y1:N ) ≈ 1

Nr

Nr∑
r=1

P (YN+1|θ1:N (r))

=
1

Nr

Nr∑
r=1

[
α0(r)

α0(r) +N
f(yN+1)+

+
1

α0(r) +N

N∑
i=1

fθi(r) (yN+1)

]
,

where Nr is the number of Gibbs sampling iterations, θi(r)
and α0(r) are the sampled parameters at the r-th iteration.
The authors in [15] have shown the convergence of the above
estimate to the actual predictive distribution P (YN+1|y1:N )
for almost all starting values. That is:

lim
Nr→∞

1

Nr

Nr∑
r=1

P (YN+1|θ1:N (r)) = P (YN+1|y1:N ) .

(20)
The above identity shows that the predictive distribution of
YN+1 is equivalent to the average likelihood function of YN+1,
averaged over the Gibbs sampling iterations.

V. CONVERGENCE OF ALGORITHM 1

The convergence of Algorithm 1 has been proven in [15],
[23] based on the MCMC approach. The convergence result
can be stated as follows.

Let QI(θ1:N (0), A) be the probability that, with an initial
value θ1:N (0) and after one iteration, Algorithm 1 produces
a sample value that is contained in the measurable set A,
i.e. QI(θ1:N (0), A) = P {θ1:N (1) ∈ A|θ1:N (0)}. QI(., .) is
called the transition kernel of the Markov chain. Similarly, let
Qs

I(θ1:N (0), A) = P {θ1:N (s) ∈ A|θ1:N (0), s}. Let’s denote
by P (θ1:N |y1:N ) the posterior distribution of θ1:N .

Theorem 1 of [15] states that, for almost all starting values
of θ1:N (0), the probability measure Qs

I (defined over the mea-
surable space Ω ⊃ A) converges in total variation norm to the
posterior distribution as s goes to infinity. That is, for almost
all θ1:N (0), lims→∞ ∥Qs

I(θ1:N (0), .) − P (θ1:N |y1:N )∥ = 0.
Of course, this convergence in probability is a weaker type
of convergence, compared to the almost sure convergence
for which P {limr→∞ ∥θ1:N (r)− θ1:N∥ > δ} = 0, for some
δ > 0. In other words, Theorem 1 does not state that
θi(r) → θi for all i ∈ {1, · · · , N}. However, it ensures
that the Gibbs sampling outcomes θ1:N (r) will be distributed
according to the actual posterior distribution of θ1:N |y1:N , for
large r. This result is particularly important to justify the use
of the Gibbs sampling outcomes in constructing the posterior
distribution of θ1:N |y1:N and finding an estimation of θ1:N .

VI. MEAN-SQUARED ERROR (MSE) ANALYSIS OF THE
ESTIMATED CLUSTER MEANS

In this section, we derive the mean-squared error (MSE)
of the estimated cluster means and, under certain regularity
conditions, we establish an asymptotic upper bound on the
MSE. Denote by µ̂k and µk to be, respectively, the estimated
and actual mean vectors of cluster k ∈ {1, · · · ,K}.

By assuming that the DPMM-based classifier results in
correct clustering of the observation points (after sufficiently
many Gibbs sampling iterations), the MSE of the estimated
cluster means µk can be expressed as:

MSEk = tr

(
1

nk
Vk

)
=

1

nk
tr (Vk) , (21)

where Vk is the covariance matrix of the observations in
cluster k, and nk is the number of data points belonging to
cluster k.

In a DPMM with N data points and with K clusters, the
average MSE becomes:

MSE = E

{
1

K

K∑
k=1

MSEk|N

}
, (22)

where the prior distribution of K is as given in (16). For large
N , K can be approximated with a Poisson random variable
such that [29]:

P {K = k|α0, N} =
e−α0(γ+logN) [α0 (γ + logN)]

k

k!
, for k = 0, 1, · · · .

(23)
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Thus, we have:

MSE = E

{
1

K

K∑
k=1

MSEk|N

}
(24)

= E

{
1

K

K∑
k=1

1

nk
tr (Vk) |N,nk ̸= 0

}
. (25)

Due to the complexity of the distribution of 1
nk

, it is hard to
obtain a closed form for the above MSE expression. However,
if the observations are equally partitioned among the clusters
(i.e. nk = N

K ), we have:

MSE = E

{
1

K

K∑
k=1

1

nk
tr (Vk) |N,nk ̸= 0

}

= E

{
1

K

K∑
k=1

K

N
tr (Vk) |N

}

≤ 1

N
E

{
K∑

k=1

Vmax|N

}
=

1

N
VmaxE {K|N} (26)

=
1

N
Vmax (γ + logN)E {α0}

=
ab

N
Vmax (γ + logN)

= MSE ,

where V max = maxk=1,··· ,K tr(Vk) and α0 ∼ Ga(a, b).
Thus, under the above assumed conditions and for large N ,
an upper bound for MSE of the cluster mean estimates can be
taken to be proportional to:

MSE ∝ logN

N
.

This result shows that the MSE of the cluster mean estimates
decreases with N . However, the convergence of the Gibbs
sampling algorithm becomes slower as N increases. Thus, a
tradeoff should be made between the estimation accuracy and
the convergence speed when selecting a particular data set of
size N for clustering.

The above asymptotic bound is valid for large values of N ,
which can be justified in spectrum sensing applications when
the sensing periods are very short, as in [21]. In this case,
we consider a time window that includes a large number of
sensing intervals as the processing period. Feature points are
extracted after each sensing interval, thus leading to a large
number of feature points N during this time window. These N
feature points are then used in DPMM classification, justifying
the use of large N in the above result. In addition, if the
RF activities remain constant during the time window, feature
points will be observed from the same clusters over successive
sensing intervals. Then, we may assume that the total number
of feature points will be equally partitioned among all the
clusters.
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Fig. 2. Signal Classification of 2 WiFi and a Bluetooth signal. The feature
point is denoted by (fc, α,B), where fc is the carrier frequency, α is the
cyclic frequency component corresponding to the symbol rate and B is the
estimated bandwidth. Energy detection is applied for 30µs at an SNR of 5 dB
with Rayleigh fading (fast fading). The probability of correct classification is
100% after 20000 Gibbs sampling iterations.

VII. SIMULATION RESULTS: SIGNAL CLASSIFICATION IN
THE ISM BAND

In this section, we apply above developed non-parametric
signal classification algorithm based on DPMM to the problem
of RF mapping. In particular, to start with, we consider 2
IEEE 802.11.b WiFi signals (channels 2 and 13) transmitting
at 2.417 and 2.472GHz, respectively. We also consider a
Bluetooth signal transmitting at 2.45 GHz during the sensing
process. The SNR at the receiver is 5 dB and each sensing
window is 30µs. We assume a fast-fading Rayleigh channel
with normalized fading coefficients h such that E{h2} = 1.

After each 30µs sensing time, feature points (fc, α,B)
are extracted from the sensed signal, where fc denotes the
carrier frequency (down-converted to zero-IF), α is the cyclic
frequency component corresponding to the symbol rate and B
is the estimated signal bandwidth. The carrier frequencies fc
and cyclic frequencies α are obtained by applying the energy
and cyclostationary detection algorithms in [22] and the signal
bandwidth is estimated from the smoothed PSD of the received
signal. In this setup, each WiFi signal has a bandwidth of 22
MHz and the Bluetooth signal has a bandwidth of 1 MHz.
Furthermore, the Bluetooth signal has a symbol rate of 1
Mbaud and the WiFi has a chiprate of 11 Mchips/s that is
manifested in the α component of the feature points.

We perform 50 repetitions of the sensing process (over
a total sensing time of 50 × 30µs) and obtain the feature
points. We then apply our proposed DPMM-based feature
classification algorithm to classify the observed feature points.
The feature points that are marked with the same marker shape
in Fig. 2 are assigned to the same cluster. We show in Fig. 2
the results of the DPMM classification in a 3D feature space
where the two WiFi signals are estimated to have Gaussian
observation models while the Bluetooth signal is assigned a
log-normal model. The classification accuracy, denoting the
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Fig. 3. The classification accuracy of the DPMM, X-means and K-means
(K = 4) algorithms using 4 different wireless signals at different SNR’s.
The feature extraction accuracy is also computed to show its impact on the
classification performance.

percentage of feature points classified into correct clusters, is
estimated as 100% in this setup.

In the next set of simulations, we compare performance of
the proposed DPMM-based classification algorithm to that of
the approach proposed in [8] based on the K-means and X-
means algorithms [9]. In the simulation setup, we consider an
additional 4-QAM digital signal transmitting at 2440 MHz. For
simplicity, we limit the feature vectors to be 2-D data (fc, B).
We analyze the performance of the DPMM, K-means and X-
means classification algorithms at different SNR’s in terms
of the classification accuracy. The classification accuracy is
defined as the proportion of feature vectors that are correctly
detected and classified. Obviously, this quantity depends on
both feature extraction and signal classification performance.
Hence, we also compute the feature extraction accuracy as
the proportion of correctly detected feature vectors. This will
show the impact of a particular feature extraction algorithm
on the overall classification accuracy.

At each SNR, we compute the feature extraction accuracy
as well as the classification performance of each of the three
above algorithms. The classification accuracy is averaged over
10 independent runs and is shown in Fig. 3. This figure shows
that the classification accuracy of each of the three classifiers
is upper-bounded by the feature extraction accuracy which is
considered as the bottleneck for the classification performance.
Obviously, this is the case since we define the correctly
classified features as a subset of the correctly detected features.
As can be seen from Fig. 3, by increasing the SNR, the feature
extraction accuracy improves, as well as both DPMM and K-
means (K = 4) accuracies. Although the K-means might have
similar (yet lower) performance, compared to the DPMM,
it requires additional prior information about the number of
clusters to achieve good results. Even with such information,
however, the K-means does not always reach the performance
level of the DPMM due to its underlying Gaussian spherical
assumption that is not able to match complex observations,
as in spectrum sensing applications. On the other hand, the
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Fig. 4. Signal Classification of 2 WiFi and a Bluetooth signal. The feature
point is denoted by (fc, B), where fc is the carrier frequency and B is the
estimated bandwidth of the signal. Energy detection is applied for 30µs at an
SNR of 5 dB with Rayleigh fading (fast fading). The probability of correct
classification is 100% after 5000 Gibbs sampling iterations.

DPMM can achieve better performance, compared to the K-
means, yet without any prior knowledge about the number
of clusters. This is due to its better ability to match the
observation model and infer hidden information about the data
by following a Bayesian approach. The X-means algorithm,
however, suffers from poor performance, even at high SNR,
since it is not able to estimate accurately the number of clusters
because of its presumption of Gaussian spherical observation
model. Furthermore, as can be shown in Fig. 3, a high SNR
does not necessarily improve the classification performance
of the X-means, as long as the number of clusters is not
estimated correctly. The DPMM classifier, however, can avoid
this problem by having a better estimation of the number of
clusters.

In Fig. 4, we plot the predictive probability distribution
of future feature points. For simplicity of representation,
we again consider a 2D feature space with feature points
(fc, B) and represent the probability density function of the
predictive distribution in contour lines. The result shows four
main clusters corresponding to the WiFi, Bluetooth and QAM
signals where the feature points corresponding to channel 2 of
the WiFi system is estimated to have a log-normal distribution
while the other feature points are estimated to have Gaussian
distributions. The obtained distribution forms an RF mapping
of the RF environment and can help CR’s to adapt their actions
by using this information (beyond the scope of this paper).

Finally, we verify the analytical MSE expression of Sec-
tion VI in the case of K = 2. In particular, we consider
two WiFi signals (channels 2 and 13) and we compute the
corresponding MSE resulting from the DPMM-based classi-
fication. We consider a scalar feature point fc consisting of
the measured center frequencies. Since the number of systems
is assumed to be fixed during the classification process, we
have E{K|N} = 2 in (26), thus resulting in an analytical
upper bound equal to KVmax

N . The mean and variance of the
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Fig. 5. Analytical upper bound on the MSE of clusters means estimation for
both simulated Gaussian data and simulated actual data with K = 2 clusters.

feature points fc’s corresponding to the two WiFi signals are,
respectively, 2416.94MHz and 0.0188MHz2, for channel 2,
and 2471.94MHz and 0.0185MHz2, for channel 13. Note
that, the means of the extracted features deviate slightly
from the transmit carrier frequencies (i.e. 2417MHz and
2472MHz) due to the limited spectral resolution in discrete
spectral estimation. We also generate i.i.d. data observations
from a GMM with 2 components and whose means and
variances are identical to the extracted feature points. We
compute the MSE of cluster means for both simulated actual
data and simulated Gaussian data, with respect to the number
of feature points N . We compare the corresponding MSE’s to
the above analytical upper bound, as shown in Fig. 5. The
result shows that the MSE’s in both simulated actual data
and simulated Gaussian data are very close to the analytical
upper bound, thus justifying the use of this upper bound with
different data models.

VIII. CONCLUSION

In this paper, we proposed a non-parametric signal classifi-
cation method to identify/classify active wireless systems in an
unknown RF environment. This proposed technique is suitable
for autonomous CR’s, such as Radiobots of [3] and [4], in
performing spectrum sensing and signal classification in alien
RF bands. Since our non-parametric technique does not require
any prior knowledge of the existing signals in the sensed
spectrum, it can ensure autonomous operation of CR’s such as
Radiobots. The proposed DPMM framework extends to both
Gaussian and non-Gaussian observation models and it uses
the Gibbs sampling to estimate the appropriate distribution
for each cluster. We derived an upper bound for the MSE of
the estimate of the cluster means as a function of the number
of feature points N . A Bayesian predictive distribution was
also derived to construct an RF mapping for the on-going
RF activity. Simulation results were presented to compare the
performance of the proposed DPMM-based algorithm to those
of existing classifiers such as K-means and X-means.
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