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Cyclostationarity-based Multi-variate

Non-parametric Quickest Detection For Cognitive
Radios
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Abstract—A novel non-parametric, multi-variate quickest de-
tection method is proposed for cognitive radios (CRs) using both
energy and cyclostationary features. The proposed approach can
be used to track state dynamics of communication channels. This
capability can be useful for both dynamic spectrum sharing
(DSS) and future CRs, as in practice, centralized channel
synchronization is unrealistic and the prior information of the
statistics of channel usage is, in general, hard to obtain. The
proposed multi-variate non-parametric average sample power
and cyclostationarity-based quickest detection scheme is shown to
achieve better performance compared to traditional energy-based
schemes. We also develop a parallel on-line quickest detection/off-
line change-point detection algorithm to achieve self-awareness of
detection delays and false alarms for future automation. Com-
pared to traditional energy-based quickest detection schemes,
the proposed multi-variate non-parametric quickest detection
scheme has comparable computational complexity. The simulated
performance shows improvements in terms of small detection
delays and significantly higher percentage of spectrum utilization.

Index Terms—Cognitive radio, Radiobot, spectrum sensing,
cyclostationarity, non-parametric quickest detection.

I. INTRODUCTION

The increasing demand for mobile wireless services, such as
web browsing, video telephony, and video streaming, with var-
ious constraints on delay and bandwidth requirements, poses
new challenges to future generation wireless communication
networks. To address the pressing shortage of spectrum to meet
these demands, the National Broadband Plan (NBP) [1] from
the Federal Communications Commission (FCC) recommends
freeing up 500MHz of spectrum for broadband use in the
next 10 years with 300MHz being made available for mobile
use in the next five years [1]. The plan proposes to achieve
this goal in a number of ways: incentive auctions, repacking
spectrum, and enabling innovative spectrum access models
that take advantage of opportunistic spectrum access (OSA)
and cognitive techniques. The plan urges the FCC to initiate
further developments on OSA beyond the already completed
TV white space allocation. In-line with the above vision, the
Radiobot architecture proposed in [2]–[7] envisions broadband
cognitive radios (CRs) that are not limited to a single radio
network. The Radiobot concept aims at future autonomous and
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self-reconfigurable wide-band CRs, which require both state-
of-the-art RF front-end and sophisticated signal processing
techniques.

Spectrum awareness is one of the most critical elements
of any CR system [2]. Previous work on CRs and dynamic
spectrum sharing (DSS) often assumes that the cognitive radio
networks (CRNs) are time-slotted (see [8] and references
therein). In time-slotted CRNs, the primary users (PUs) be-
come active or idle at the start of a time slot. During one time
slot, the PUs state is not changed. Therefore, the secondary
users (SUs) can spend a short sensing period at the beginning
of each time slot to determine the spectrum availability. At the
end of the sensing period, SUs may transmit their data if the
inferred spectrum state is idle, otherwise they must remain
silent. However, in more general cases, primary networks
may not be time-slotted. Even when they are time-slotted,
autonomous CRs may not be able to be synchronized with
the primary networks. As a result, the PUs may change their
states at any time from the point of view of autonomous CRs,
and thus the CRNs are non-time-slotted. Performing periodic
spectrum sensing is no longer sufficient to keep track of the
state changes of the communication channels in non-time-
slotted CRNs. Instead, one may have to resort to the quickest
detection (QD) methods.

In the QD problem, one observes samples sequentially.
Initially, the samples are drawn from a certain distribution. At
an unknown time, the distribution changes. Once this occurs,
one needs to raise an alarm as quickly as possible to minimize
the detection delay [9]. In non-time-slotted CRNs, the on/off
radio activities at unknown times will change the distribution
of the received signal by a CR. In general, QD schemes can be
classified into parametric and non-parametric schemes. Para-
metric QD schemes rely on the knowledge of the pre-change
and post-change distributions of the observations. However, in
a variety of applications, including detecting radio activities
in an unknown RF environment, such prior knowledge may
be hard to obtain due to uncertainties induced by channel
fading, channel shadowing, the distance to the primary radios,
and Doppler effects, among others. In comparison, a non-
parametric QD scheme does not require any knowledge of
the pre-change and post-change distributions.

In [10], QD methods were proposed for CRs. Both para-
metric and non-parametric based algorithms were discussed
and analyzed. However, the discussed methods were only
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based on energy features. Note that the detection reliability
can be compromised by using energy features alone under
channel shadowing, since variation of the received signal
power level may trigger excessive false alarms. Moreover, the
non-parametric approach proposed in [10] uses the individual
sample power as the test statistics instead of the average sam-
ple power over a certain duration. This, however, significantly
increases the number of detection/observation steps leading to
a high computational complexity compared to using a time
window to obtain the average sample power. In this paper,
we show that the choice of the time window length plays
a critical role in determining the achieved detection delay,
false alarm rate, as well as the percentage of idle channel
utilization. Setting the time window length down to one sample
is evidently not the best choice.

In [3], the authors developed a blind energy and
cyclostationarity-based signal identification and classification
procedure that does not rely on any prior knowledge of
the radio environment. It is also shown in [3] that the
cyclostationarity-based signal features are robust against chan-
nel fading, shadowing and Doppler effects. As a result, in this
paper, we propose to utilize the cyclostationarity feature to
overcome the aforementioned reliability issue of the traditional
energy-based QD approach in complex channel conditions,
and to exploit diversity to improve the detection performance.
To the best of our knowledge, such an average sample power
and cyclostationarity-based multi-variate non-parametric QD
has not been previously considered in literature. Moreover,
the performance of the proposed QD algorithms is evaluated in
more realistic multi-path frequency-selective fading channels
with Doppler effects, compared to [10].

The main contributions of this paper include: 1) the pro-
posal of the average sample power and cyclostationarity-
based multi-variate non-parametric QD strategy for CRs; and
2) the proposal of the parallel on-line QD/off-line change-
point detection strategy that is used to provide information of
detection delays and false alarm rates as feedback for possible
machine learning techniques to achieve future autonomous
operation. Note that originally multi-variate non-parametric
QD strategy was proposed in [11]. The incorporation of the
machine learning techniques to achieve autonomous operation
is left as future work due to the focus of this paper and
the space limitation. The computational complexities of the
energy-based uni-variate non-parametric QD method and the
multi-variate non-parametric QD method are also compared
in this paper. We show that the multi-variate QD method has
a comparable complexity to the uni-variate case, depending
on the choice of time window length of each sensing step.
The simulation also shows that the proposed multi-variate
QD method outperforms the energy-based uni-variate case,
in terms of the detection delays and the percentage of idle
channel usage.

Note that, the proposed non-parametric QD scheme in this
paper can be used for detecting both state transitions from
idle to busy, and those from busy to idle. Since the only
transmission opportunities for a CR happen when the channel
is idle, it is desirable to actually utilize the channel while
the QD is in progress detecting a state change from idle

to busy. However, this may not be possible when a CR
uses traditional half-duplex radio front-ends since they do not
support simultaneous transmission and reception of different
signals in the same channel. As a result, it is advantageous to
consider a possible full-duplex RF front-end in this context.
Several full-duplex proposals haven been shown in literature
[12]–[15] due to recent advances in radio frequency (RF) front-
ends. Although the full-duplex radio front-ends can provide
benefits in terms of transmission, the proposed QD method
does not depend on the full-duplex radio front-ends and
works equally well with traditional half-duplex front-ends. In
this paper, full-duplex radio front-ends are not discussed any
further. The incorporation is left as a future task.

The remainder of this paper is organized as follows. In
Section II we describe our system model. The uni-variate
non-parametric QD scheme is then briefly described to pre-
pare the reader for subsequent sections. In Section III, we
propose the non-parametric average sample power-based and
the cyclostationarity-based QD schemes. We then propose
the average sample power and cyclostationarity-based multi-
variate non-parametric QD, followed by the novel parallel
on-line QD/off-line change-point detection scheme. In Sec-
tion IV we present performance evaluation of the proposed
QD schemes through simulations. In Section V we conclude
by summarizing our results and identifying possible future
directions.

II. SYSTEM MODEL AND NON-PARAMETRIC QUICKEST
DETECTION

Due to the focus of this paper on the QD algorithm, we
consider the spectrum sensing for a particular communication
channel and omit the decision-making problem for scheduling
of which channel to sense at any given time. Note that the
proposed methods in this paper work for detecting the state
transitions from either idle to busy or from busy to idle.
Without loss of generality, first we may consider the case
of detecting a change from idle to busy. The detection of
changes from busy to idle is further explained in later sections.
We assume that after a state change is detected, observa-
tions corresponding to the past are discarded. Thus, a new
observation vector is obtained by re-initializing the starting
point as the previous detection point. As a result, by applying
the proposed method iteratively, we may detect each state
change-point in a sequence of multiple alternating state change
cycles, as long as those changes are sufficiently far apart in
order to obtain enough observation data to make a decision.
Hence, for the proposed QD schemes to work properly, we
assume that the sampling rate is set at a higher rate compared
to the rate of state changes. For example, in the simulation
section, we assume that the minimum sojourn times of idle
and busy channel states are 600µS (a reasonable assumption
according to [16]), while sensing sampling rate is 100MHz.
For a certain communication channel of interest, we denote by
vector Zn1 = [Z1, Z2, · · · , Zn]T the sequence of observations
or test statistics from time step 1 up to n, depending on the
adopted particular sensing technique, including for example,
energy detection and cyclostationarity-based detection, etc. At
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each time n, a CR attempts to distinguish the following two
hypotheses based on Zn1 :

H0 : Zi ∼ g0, ∀ i ∈ {1, · · · , n}
H1 : ∃ τ ∈ {1, · · · , n},

s.t.

{
Zi ∼ g0, ∀ i ∈ {1, · · · , τ − 1}
Zi ∼ g1, ∀ i ∈ {τ, · · · , n}

, (1)

where we denote by g0 and g1, respectively, the distribution of
Zi under channel idle and busy hypotheses and τ denotes the
time of the state change from idle to busy. We denote by Γ the
strategy adopted for the hypothesis testing and denote by ta
the time when the strategy raises an alarm of a state change.
If ta ≥ τ , the detection delay is defined as τd = ta − τ .
On the other hand, if ta < τ , we say a false alarm occurs.
Due to the fact that a prior distribution for the change point
is generally hard to find and the statistics of the state change
pattern can easily be non-stationary, we consider the QD in a
non-Bayesian framework.

Note that the channel allocation information1 can generally
be unknown to a Radiobot a priori. However, by following
the procedure of the RF activity detection and classification
introduced in [3], one may classify the RF activities according
to their center frequencies, cyclostationary features (symbol
duration, coding structures, etc.), and bandwidths to obtain
the knowledge of the RF spectrum usage, so that channel
allocation information can be inferred and identified within
the frequency range of interest.

In the framework of non-Bayesian QD, the worst case
conditional mean delay is usually defined as [9], [17]

T̄d = sup
τ≥1

ess supEg1{τd = ta − τ | ta ≥ τ,Zτ1}, (2)

where Eg1{·} denotes expectation under the distribution g1,
and the operator ess sup denotes the essential supremum or
the smallest essential upper-bound. The conditioning within
the expectation is with respect to the change point, and the
worst case is taken over all possible values of the change
point and all realizations of the measurements or the obtained
test statistic sequence up to the change point. Note that the
conditional mean delay can be defined as Eg1{τd = ta − τ |
ta ≥ τ,Zτ1} [9], which itself is random since τ and Zτ1 are
random. One could assign a prior distribution to τ , and then
define average delay by averaging the distribution on τ and Zτ1 .
However, it may be difficult to find a suitable prior distribution
for τ in the application of cognitive radios. As a result, the
worst case, meaning using the least favorite distributions of τ
and Zτ1 , is considered by taking the essential supremum over
Zτ1 , and taking the supremum over τ to the conditional mean
delay. We may also define the average run length (ARL) to
false alarm (mean value of the false alarm intervals) to be

T̄f = Eg0{ta}, (3)

1Within the frequency range covered by each configuration of the reconfig-
urable antenna, there can, in general, be multiple channels belonging to pos-
sibly different systems, according to a static RF spectrum allocation scheme.
The allocated channels generally may have different center frequencies as
well as their bandwidths.

where Eg0{·} denotes expectation under the distribution g0.
Note that in (3), the condition ta < τ is not included since
it is redundant. On the other hand, no essential supremum is
taken, so the condition on Zi’s is also not necessary.

The optimization problem can then be defined to find the
strategy Γ that minimizes T̄d while satisfying a lower threshold
Tth for the ARL to false alarm T̄f :

min
Γ

T̄d = sup
τ≥1

ess supEg1{τd = ta − τ | ta ≥ τ,Zτ1},

subject to T̄f ≥ Tth. (4)

Let us denote by G0 and G1 respectively the cumulative
distribution functions (cdfs) of Zi corresponding to g0 and g1,
such that G0(z) =

∫ z
−∞ g0(x)dx and G1(z) =

∫ z
−∞ g1(x)dx.

Note that G1 is said to be stochastically greater [18] than G0

when G0(x) ≥ G1(x) for all x, and we can write G1 �st G0.
Observe that if for a particular random process Zi, for

i = 1, 2, 3, · · · such that the cdfs GZ,0 and GZ,1 instead
satisfy GZ,0 �st GZ,1, and if we denote by Xi = −Zi another
process with corresponding pre-change and post-change cdfs
denoted by GX,0 and GX,1, then it is straightforward to show
that GX,1 �st GX,0. This makes it easy to adopt the same
QD algorithm explained in the following for both detecting
the state changes from idle to busy and those from busy to
idle. In case of detecting the state changes from busy to idle,
we may simply add a negative sign in front of the obtained
test statistics Zi’s such that the post-change distribution is
stochastically greater then the pre-change distribution.

From the observation vector Zn
1 = [Z1, · · · , Zn], we may

define the rank for the i-th observation Zi, as ρ(i, n) =∑n
j=1 I{Zi≥Zj}, where I{E} is the indicator function of event

E, defined as I{E} = 1 if event E is true and I{E} = 0
otherwise. Thus, a higher valued observation Zi has a higher
rank ρ(i, n) in the first n observations. Then, we may take
ρn = [ρ(1, n), · · · ρ(n, n)] to determine a permutation of
the first n integers. Its inverse permutation can be deter-
mined as µn = [µ(1, n), · · · , µ(n, n)], where we define
µ(ρ(j, n), n) = j, such that the function µ(ρ(j, n), n) returns
the time sequence index j of an observation with rank ρ(j, n).

With these definitions, the likelihood ratio of the change
taking place at τ = k, for k ∈ {1, · · · , n}, and observing a
particular ρn is given by

Λnk (ρn) =
P{Zµ(1,n) < · · · < Zµ(n,n) | τ = k}
P{Zµ(1,n) < · · · < Zµ(n,n) | τ > n}

. (5)

Since the above rank based likelihood ratio is not too sensitive
to the true underlying distributions [18], one can compute this
likelihood ratio by choosing some representative/hypothesized
pre and post-change distributions and design a corresponding
algorithm based on this likelihood ratio [18]. Note that the
invariance of the ranks under strictly increasing transforma-
tions causes the average run length (ARL) to false alarm to
be identical for any continuous G0.

For example, if we choose the representative/hypothesized
pre and post-change pdfs as f0(x) = e−|x|/2 and f1(x) =
pαe−αxI{x≥0} + qβeβxI{x<0}, with p ∈ (1/2, 1), α ∈ (0, 1),
β ∈ [1,+∞), and q = 1− p [18], then we have the following
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cdfs:

F0(x) =

{
1
2e
x, if x < 0

1− 1
2e
−x, if x ≥ 0

, (6)

F1(x) =

{
qeβx, if x < 0

1− pe−αx, if x ≥ 0
. (7)

If we make pα ≥ qβ, then we can verify that the F1 is
stochastically greater than F0.

According to [18], the likelihood ratio function in this case
can then be expressed as

Λnk (ρn) =

n∑
i=0

λnk,i(ρn), (8)

where
n∑

m=0

λnk,m(ρn) =

(
n

m

)(
1

2

)n(
pα

qβ

)Uk(m,n)

(2qβ)n+1−k

×
m∏
i=1

(
1 +

Vk(i, n)

i
(β − 1)

)−1

×
n∏

i=m+1

(
1 +

Uk(i− 1, n)

n+ 1− i
(α− 1)

)−1

,

(9)

with Uk(m,n) =
∑n
j=k I {ρ(j,n)>m}, and Vk(m,n) = (n +

1− k)− Uk(m,n) [18].
The procedure for the QD provided in [18] is to compute the

Shiryayev-Roberts statistic Rn =
∑n
k=1 Λnk (ρn) and to stop at

time ta when Rn first achieves or exceeds the critical level A.
The ARL to false alarm is shown in [18] to be lower-bounded
as

A ≤ Eg0{ta}, (10)

and the ARL to false alarm is shown to grow asymptotically
linearly in A as the critical level becomes large. The detection
delay is shown in [18] to be upper-bounded as

lim sup
A→∞

sup
τ≥τ(A)

Eg1{ta − τ | ta ≥ τ} ≤
log(A)

D(G0, G1; f0, f1)
, (11)

where

D(G0, G1; f0, f1) = E1

{
log

(
f1(F−1

0 (G0(Z1)))

f0(F−1
0 (G0(Z1)))

)}
. (12)

The computational complexity of this uni-variate non-
parametric QD procedure can be shown to be O(n4) [18].

III. AVERAGE SAMPLE POWER AND
CYCLOSTATIONARITY-BASED MULTI-VARIATE

NON-PARAMETRIC QUICKEST DETECTION

A. Non-parametric Average Sample Power-based Quickest
Detection Scheme

When there is no prior information about the signal of
interest, at any time instance one may model the received
signal in a particular channel as Y = W under the assumption
of no communication activity, where we denote by W the
noise; and Y = X + W when communication activities are
present, where we denote by X the received signal contributed

from the activity. When the distributions of Y under both
activity absent and present are hard to find, or the distribution
parameters are unknown, one may adopt the above introduced
uni-variate non-parametric QD. The authors in [10] proposed
to use the sample powers as the test statistic Zi’s in the non-
parametric change-point detection method discussed above,
which has a computational complexity of O(n4). However,
we find that this method is unsuitable when the idle/busy
periods last for a length that is at least several transmission-
packets long, which is normally the case. This is because
the computational complexity becomes high when the size of
the vector Zn1 is large. Instead, in this paper, we propose to
use a number of consecutive samples to compute an average
signal power as the test statistic. In particular, we assume
that for every M number of samples, we compute Zi =
1
M

∑iM
j=1+(i−1)M |Y (j)|2 as the test statistic. In this case, the

computational complexity of obtaining the average power at
each step is O(M). Thus, the computational complexity of
the overall uni-variate non-parametric QD scheme becomes
O(Mn4). It is straightforward to see that, by increasing the
number of samples M in each step, the expected number of
detection steps n may be significantly reduced. As a result, a
lower computational complexity may be obtained by using
a time window to compute an average power, instead of
using individual sample powers for the QD. In the simulations
section, we also investigate the effect of the choice of M in
terms of the detection delays and false alarm rates. In this
case, the ARL to false alarm and the detection delay are as
characterized in (10) and (11), respectively.

B. Non-parametric Cyclostationarity-based Quickest Detec-
tion Scheme

It is well-known that almost all man-made signals ex-
hibit some underlying periodicities due to, for example, their
symbol rates, coding schemes, packet/frame header structures
and training symbol sequences, etc. [19]. We consider a
cyclostationary digital signal x(t) and a general linear time-
varying (LTV) fading channel2 having an impulse response
of h(τ ′, t). From the definition of cyclostationarity, the auto-
correlation function of x(t) is a periodic function of t, i.e.
Rxx(t+T0, τ) = Rxx(t, τ), for some period T0. The received
signal y(t) through the LTV fading channel can be expressed
as:

y(t) =

∫ ∞
0

x(t− τ ′)h(τ ′, t)dτ ′ + w(t), (13)

where w(t) is an additive wide sense stationary (WSS) noise
process. Under the assumption of the channel being wide
sense stationary and uncorrelated scattering (WSSUS)3 which

2Time-varying is due to relative motion between the transmitter and
receiver. Note that the LTV channels are also referred to as time-frequency
dispersive/selective or doubly dispersive/selective in the literature.

3According to empirical studies, the channel can be considered as WSS
as long as the mobile unit (the transmitter and/or receiver) covers a distance
in the order of a few tens of the wavelength of the carrier signal during an
observation period [20]. We also assume that scattering components with dif-
ferent propagation delays are statistically uncorrelated. These channel models
are called US (uncorrelated scattering) channel models or US models [21].
The most important class of stochastic LTV channel models is represented by
models belonging both to the class of WSS and to the class of US.
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is almost exclusively employed in literature for modeling
frequency selective mobile radio channels [20]–[24], it has
been shown in [3] that the autocorrelation function of the
received signal y(t) is also periodic with the same period T0

as the transmitted signal x(t), so that the received signal y(t)
is also cyclostationary with the same cyclic components as
x(t).

Using the discrete-frequency smoothing method [19] de-
scribed below, we may compute an estimate of the Spectral
Correlation Function (SCF) Sαx (t, f) for a general discrete
signal {x(t − kTs)}M−1

k=0 in a particular channel (assuming
that the signal is band-limited to the frequency range from fL
to fH ), with M number of samples and a sampling period
of Ts. The FFT X̃(t, f) of the sequence {x(t − kTs)}M−1

k=0

is defined in (14) over the set of frequencies {− fs2 ,−
fs
2 +

Fs, · · · , fs2 −Fs,
fs
2 }, where fs = 1

Ts
is the sampling rate and

Fs = 1
MTs

is the frequency increment and a(t) is a triangular
data tapering window [19].

X̃(t, f) =

M−1∑
k=0

a(t− kTs)x(t− kTs)e−j2πf(t−kTs). (14)

An estimate of the SCF can then be obtained [19] based on
the discrete-frequency smoothing method:

S̃αx (t, f) =
1

LT

(L−1)/2∑
ν=−(L−1)/2

X̃(t, f+
α

2
+νFs)X̃

∗(t, f−α
2

+νFs),

where T = MTs is the time length of the data segment,
α is the cyclic frequency and L (an odd number) is the
spectral smoothing window length. An estimate of the spectral
autocoherence function magnitude [19] can then be computed
as:

|C̃αx (t, f)| = |S̃αx (t, f)|√
S̃0
x(t, f + α/2)S̃0

x(t, f − α/2)
, (15)

for all f ∈ [fL, fH ]. Note that |C̃αx (t, f)| is normalized to be
between 0 and 1. A channel cyclic profile for a channel from
fL to fH can then be defined as

Ĩx(t, α) = max
f∈[fL,fH ]

|C̃αx (t, f)|. (16)

The authors in [3] proposed a blind cyclostationarity-based
signal identification and classification strategy, which extracts
the underlying cyclic components induced by their symbol
rates and coding structures without any prior information. The
cyclic components induced by signal symbol rates and coding
structure can be extracted by finding local maxima of Ĩx(t, α).
The local maxima are not hard to be determined by setting a
threshold to the cyclic profile since the profile has sharp peaks
at the cyclic frequencies corresponding to the symbol rate and
coding rate. The same authors in [3] also developed a machine
learning based algorithm for setting the threshold of the cyclic
profile in order to better extract the cyclic components without
any prior information in a later work in [7]. Due to the space
limitation and the focus of this work, we do not present more
details of this blind cyclostationarity-based signal identifica-
tion and classification procedure in this paper. By utilizing the

blind signal identification and classification method in [3], we
may obtain knowledge of the channel information including
channel carrier frequency, bandwidth, and cyclic components
associated with each channel. On the other hand, in the context
of traditional dynamic spectrum sharing, channel information
and primary signal characteristics, such as carrier frequency,
signal bandwidth, symbol rates etc., are generally assumed to
be known beforehand. As a result, the following proposed QD
schemes are applicable for the traditional CRs as well.

Assuming a particular cyclic frequency α0 that is of interest
for a particular channel from fL to fH , one may compute
the value of Ĩx(t, α0). It can be seen from (15) and (16)
that, Ĩx(t, α0) takes value in the interval of (0, 1). However,
due to channel fading, shadowing effects, sensing duration,
sampling frequency, unknown signal-to-noise ratio (SNR), and
estimation errors etc., the distribution of Ĩx(t, α0) is generally
hard to find in closed-form. As a result, in this paper we
propose to use the non-parametric scheme as introduced in
[18] to perform the QD. We assume that for every M time
samples of the received signal of interest, at a sampling rate of
fs, we may obtain a test statistic Zi = Ĩx(i, α0), in which we
replaced the time index t by the sequence index i to indicate
the i-th test statistic. We denote by G0 and G1 the cdf of Zi
under hypothesis H0 and H1, respectively. It has been shown
in [3] that when an RF signal with the cyclic component α0

is present, the function Ĩx(i, α) tends to exhibit a local peak
with a value close to 1 at α = α0; and on the other hand,
if the signal is absent, the function tends to have a low value
close to 0 at α = α0. Consequently, it is reasonable to assume
that the distribution G1 is stochastically greater than G0 and
we verify this by simulations in the following.

As shown in Fig. 1, we obtained the estimated cdfs of the
averaged sample power and Ĩx(i, α0) at α0 = 1MHz under
both signal absent and present scenarios (we plot the cdfs
of the average sample power in Fig. 1 in order to compare
to the cyclostationarity-based case) with various sensing time
window lengths and three different SNRs: −10dB, 0dB and
5dB. The simulated signal is a Bluetooth signal with a symbol
duration of 1µS (i.e., a resulting symbol rate cyclic fre-
quency feature at 1MHz). The channel is a frequency-selective
(multi-path) fading channel with a maximum Doppler shift
of ±300Hz, which corresponds to a maximum transmitter-
receiver relative speed of 37.5m/s, or around 84 mph for a
signal in the 2.4GHz frequency range. There are three discrete
paths specified with their delays 0µS, .15µS, and .32µS,
respectively, and with an average path gain of 0dB, −10dB,
and −10dB, respectively. Each discrete path is modeled as an
independent Rayleigh fading process. As is seen from Fig. 1,
in all cases, the resulting G1 (signal present) is stochastically
greater than G0 (signal absent), or G1 �st G0.

We can also see from Fig. 1 that when the SNR is low
(−10dB), the pre and post-change cdfs of the averaged sample
power does not differ as much compared to the case of
Ĩx(i, α0), even with a long sensing time (200µS). On the
contrary, the pre and post-change cdfs of Ĩx(i, α0) differ from
each other noticeably even when SNR = −10dB with a
sensing time of 100µS. Intuitively, the more the pre- and post-
change cdfs are distinguishable, the better detection perfor-
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Fig. 1. Estimated cdfs for the averaged power and Ĩx(t, α0) when the signal with cyclic component α0 is absent and present.

mance can be expected in terms of the averaged detection
delay and ARL to false alarms. This suggests that when the
SNR is low, the cyclostationarity-based scheme can be more
effective with longer sensing time window length. On the other
hand, as we can see from Fig. 1, with a short sensing time
of 10µS at SNR = 5dB, the difference between the pre- and
post-change cdfs is greater in the case of the averaged sample
power, compared to the difference of those of Ĩx(i, α0). This
suggests that, when SNR is high, the average sample power-
based QD scheme may be more efficient. This is because a
short sensing time for the cyclostationarity-based case is not
adequate for obtaining distinguishable pre- and post-change
cdfs as in the average sample power-based case. It is then
straightforward to see that the sensing time length can be a
critical factor of the efficiency and the effectiveness of the QD.
In particular, by using a longer sensing time length in both
cases, more distinguishable pre- and post-change distributions
are obtained for the metrics. However, note that the detection
delay is expressed in terms of the observation steps in [18]
as discussed in Section II. Thus, the detection delay of the
proposed non-parametric QD method in this paper is given
by the product of the number of observation steps and the
sensing time length at each step. As a result, a longer sensing
time length setting for each observation step may also increase
the overall detection delay.

From the above observations, it is reasonable to exploit the
diversity and consider combining the energy-based and the
cyclostationarity-based QD schemes, since each offers distinct
advantages and disadvantages under different conditions. In
particular, one may consider a vector test statistic based on the

observations of the averaged sample power and the value of
Ĩx(i, α0) for each operation step, and perform the QD. In the
next sub-section, we discuss such a multi-variate QD scheme.

C. Average Sample Power and Cyclostationarity-based multi-
variate Quickest Detection

Combining the average sample power-based and the
cyclostationarity-based test statistics at each time step, we may
generate a multi-variate observation at each step by stacking
the obtained average sample power and Ĩx(i, α) into a 2 × 1
column vector at each time, i.e. at time n, with a slight abuse
of the notation, we obtain the matrix

Zn1 = [Z1Z2, · · · ,Zn], (17)

where we denote by Zi’s 2×1 column vectors, for all 1 ≤ i ≤
n. In [25], a class of multivariate rank-like quantities is defined
and used to develop multivariate tests to mimic traditional one-
dimensional rank tests. We may adopt the algorithm developed
in [11] to define the centered directional rank vector [11] of
Zi for all 1 ≤ i ≤ n as

Rn(Zi) =

n∑
j=1

Dij , (18)

where we let
Dij =

Zi − Zj
||Zi − Zj ||

. (19)

The interpretation is that Dij is a unit vector pointing from Zj
to Zi, or the normalized difference between Zi and Zj . The
centered directional rank vector Rn(Zi) may be considered as
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the accumulated difference between the point Zi and the rest
of data points, similar to the idea of ranking in the traditional
one-dimensional case. We may then define the test statistic
Rk,n as

Rk,n = R̄(k)T

n Σ̂
−1

Rk,n
R̄(k)
n , (20)

where

R̄(k)
n =

1

k

k∑
i=1

Rn(Zi), (21)

and

Σ̂Rk,n
=

n− k
(n− 1)nk

n∑
i=1

Rn(Zi)Rn(Zi)
T , (22)

for k = 1, · · · , n. Note that R̄
(k)
n may be interpreted as

the average of the first k ranking values. If {Z1 · · ·Zk}
are from the same distribution, then these data points are
located more closely compared to the case in which there
exists a distribution change before the k-th point. As a result,
comparatively, a shorter vector R̄

(k)
n is obtained for the case

of no distribution change, and a longer vector R̄
(k)
n is obtained

for the case with a distribution change before the k-th point.
Then, the quadratic term Rk,n of R̄

(k)
n may be used as the

test statistic to detect a distribution change point, since Rk,n
reflects the length of the vector R̄

(k)
n , which is affected by

the existence/absence of a change point. The QD may then
proceed as follows: 1) obtain Rmax,n = max1<k≤nRk,n; 2)
If Rmax,n > hn,pf , raise an alarm for state change, otherwise
collect another multi-variate vector observation and repeat
steps 1) and 2). The threshold hn,pf is chosen such that the
conditional probability of a false alarm when observation n is
added is equal to pf , given that no previous false alarm has
occurred, or

Pr{Rmax,n > hn,pf | Rmax,j ≤ hj,pf ; j < n} = pf . (23)

Note that again this detection method works for both detect-
ing the state changes from idle to busy as well as for detecting
those from busy to idle. However, as also noted in [11], finding
an analytical solution for the sequence of control thresholds
hn,pf is generally difficult due to the unknown distributions
of the observations in the first place. As a result, we resort to
simulations in Section IV to illustrate the performance of this
combined QD scheme. In practice, we suggest to combine this
approach with a suitable machine learning (adaptive) technique
[26] to obtain the appropriate control thresholds. However, this
is out of the scope of this paper and left as a future research
task.

The computational complexity of the proposed multi-variate
non-parametric QD algorithm can be shown to be linear in
n3, i.e. O(n3), where n denotes the number of time steps
before a state-change detection. However, the author in [11]
has developed a recursive algorithm to make the computational
complexity of the multi-variate QD algorithm linear in n,
or O(n). This is accomplished by deriving an expression to
compute the test statistics Rk,n+1 from Rk,n. Note that the
computational complexity of obtaining average sample power
in each step is O(M), where M denotes the number of

samples in each step. Whereas, the computational complexity
of obtaining the cyclostationary feature for a particular cyclic
frequency in each step is dominated by the fast Fourier trans-
form (FFT), which is O(M logM). The overall computational
complexity of the proposed multi-variate QD procedure is
then O(nM logM). On the other hand, the computational
complexity of the energy-based uni-variate QD algorithm has
a complexity of O(Mn4). Thus, when logM < n3, the
complexity of multi-variate case may be expected to be even
less than the uni-variate case, due to the recursive algorithm
proposed in [11]. In case when M is large and M � n, the
complexities of these two cases should still be comparable.

In our case, since we are dealing with alternating idle
and busy state changes, we propose that whenever a state
change has been detected, we use new observations after each
detection point for the QD of subsequent state changes. In
this way, we may control the computation complexity of the
proposed multi-variate QD to be manageable. In case of either
an idle or a busy state lasts for a long time of period, we may
adopt a moving time window to discard older observations and
make use of only the recent observations to perform the QD
and effectively keep the computation complexity low.

To provide the self-awareness of false alarms and the
achieved detection delays in the QD procedure, in the follow-
ing we propose a novel approach to combine the above QD
procedure with an offline change-point detection algorithm.

Whenever a false alarm is encountered, either an alarm of
state changing from busy to idle is raised before its actual
change, or an alarm of state changing from idle to busy is
raised while the state is still idle. In the first case, if the CR
(or the Radiobot) further decides to start transmitting data on
the monitored channel, collisions with other radio activities
may occur. In the second case, though there may not be
collisions, valuable spectrum opportunities are lost. In either
case, any false alarm can certainly affect the performance of
the subsequent QDs, causing detection delays and possibly
more subsequent false alarms, since the observations from
different distributions (pre-change and post-change) are treated
as from the same distribution. Note that, detection delays may
also affect the detection performance of subsequent detections
in a similar way since a detection delay may omit one or
more state alternating cycles (a state change from busy to idle
followed by a change back to busy is referred as an alternating
cycle and vice versa). In order to provide the self-awareness
of false alarms and detection delays to improve subsequent
detections, we propose to incorporate a parallel offline change-
point detection algorithm with our proposed multi-variate QD
algorithm. Although the method of the offline change-point
detection has already been discussed in [11], the concept of
the combination of QD and the offline change-point detection
has not been considered in the literature.

The exact off-line change-point detection procedure can be
explained as follows. For a given sequence of observations
with a length of N , one may obtain the test statistics

Rk,N = R̄
(k)T

N Σ̂
−1

Rk,N
R̄

(k)
N , for all k = 1, · · · , N , (24)

similarly to the QD procedure described above. Then an
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estimate of the change point can be obtained as [11]

τ̂C = arg max
1≤k≤N

Rk,N . (25)

The parallel on-line QD/off-line change-point detection al-
gorithm can be explained as follows: The off-line change-point
detection procedure is invoked whenever a state change alarm
is raised from the on-line QD procedure. The QD outcome is
trusted for the time being, so that the QD may drop previous
observations, re-initialize and take new observations for a
subsequent detection of state change. However, the dropped
observations from the previous QD procedure are kept for the
off-line change-point detection procedure. As the on-line QD
procedure continues, newly obtained observations are also fed
into the off-line change-point detection procedure. For a short
period of time, the off-line change-point detection algorithm
may then re-estimate the past state change-point based on
both the newly obtained observations and the kept observation
history. If the re-estimated change-point were to be different
from the initial result declared by the on-line QD procedure,
then the re-estimated change-point from the off-line detector
is used to re-initialize the starting point for the current on-line
QD procedure. In this way, detection delays are made known
to CR by comparing the results from the on-line QD procedure
and that from the off-line change-point detection procedure.

On the other hand, in order to detect false alarms, we
propose to use an off-line threshold hoff on the test statis-
tics: if maxRk,N ≥ hoff , then τ̂C = arg max

1≤k≤N
Rk,N is

used to update the change-point as introduced above; if
maxRk,N < hoff , cancel the state-change alarm and re-
initialize the current on-line QD procedure from the previous
confirmed state change-point. Note that false alarm rates can
be reduced by directly setting a higher threshold in the on-
line QD procedure. However, this causes longer detection
delays. As an alternative, by having a higher threshold hoff
for the off-line change-point detection procedure (compared
to that of the on-line QD procedure), false alarms can be
corrected to some extent without compromising the detection
delay performance. Note that since the off-line change-point
detection procedure relies on more observations, it can provide
more accurate/reliable results on average compared to those
obtained in the on-line QD procedure. The detailed procedure
of the parallel on-line QD/offline change-point detection is
presented in Algorithm 1.

IV. SIMULATIONS AND RESULTS

In this section, we show representative simulation results
to illustrate the advantages of the proposed methods for the
channel state QD in CRs such as Radiobots. Note that all
the following simulations are based on the same multi-path
frequency-selective channel with Doppler effect as used in
Section III-B.

In Fig. 2, a typical situation of the non-parametric
cyclostationarity-based (univariate, without using the average
sample power) QD procedure introduced in Section III-B is
shown. In the top panel, we show the values of Zi = Ĩx(i, α0)

Algorithm 1 Parallel Quickest detection and Offline Change-
point detection

Initialization: Alarm flag f ← 0, set offline window wait
length c, set threshold h and hoff , set np = n0 = 1
for n = 1, 2, 3, · · · do

Obtain observations Znn0

Rk,n ← R̄
(k)T

n Σ̂
−1

Rk,n
R̄

(k)
n , for all k = n0, · · · , n

if max
n0≤k≤n

Rk,n ≥ h then
Set the alarm flag to current step: f ← n
Keep track of the previous state change-point: np ← n0

Set current state change point: n0 ← n
end if
if n = f + c and n 6= c then

if max
np≤k≤n

Rk,n ≥ hoff then

τ̂C ← arg max
np≤k≤n

Rk,n

Re-initialize starting point as n0 ← τ̂C
else

Re-initialize starting point as n0 ← np
end if

end if
end for

up to roughly 15000µS. In the middle panel, the sequentially
obtained Shiryayev-Roberts statistic is shown. The QD thresh-
old A for the Shiryayev-Roberts statistic is set to 500. Other
parameters are shown in the panel itself. In the bottom panel,
the true state change history and the detection results are
superposed to show detection delays. The procedure for the
average sample power based QD introduced in Section III-A
is similar.

Fig. 3 shows a typical scenario of the proposed paral-
lel QD/offline change-point detection procedure. We set the
threshold hn,pf = 11 for all n of the on-line QD and
hoff = 15 for the off-line change-point detection. We show
the state change history and the QD results in the top panel. In
the middle panel, we show the plot of test sequence Rk,n for
each time an alarm is raised, i.e. when Rmax,n > hn,pf where
Rmax,n = maxRk,n. In the bottom panel, we show the plot
of Rk,n for each time the off-line change-point detection is
engaged. Note that the off-line change-point detection detects
the false alarm (Rmax,n < hoff ) at stage 1 and detects
detection delays from stage 2 to stage 5. The estimated chant-
points are re-adjusted for all stages. As shown in the middle
panel, the re-adjusted change-point of each stage is the first
data point of Rk,n sequence of the next stage, which is the
same as the maximum point of Rk,n of the corresponding
stage in the bottom panel. However, the on-line QD point of
each stage is the last data point of of Rk,n sequence of that
stage, as shown in the middle panel. The off-line re-adjusted
change-points are closer to the real change-points compared
to the on-line estimates.

Fig. 4 shows performance comparisons of the average sam-
ple power-based, the cyclostationarity-based, and the multi-
variate parallel QD strategies. The comparison of average
detection delay is shown in Fig. 4(a), the probability of
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Fig. 4. Performance comparisons of the average sample power-based, the cyclostationarity-based, and the multi-variate parallel QD strategies. With a sampling

rate of 100MHz, the sensing time durations are set to 5µS, 10µS, and 15µS, respectively in all cases.

change-point detection and the false alarm probability are
shown in Fig. 4(b), and the resulting percentage of idle state
usage is shown in Fig. 4(c). In the two uni-variate QD cases,
the threshold for the Shiryayev-Roberts statistic Rn was set to
A = 830. In the multi-variate parallel QD case, the detection
thresholds are set to be hn,pf = 17 and hoff = 20 in order to
make the false alarm probabilities lower than the other two
cases for a fair performance comparison. Note that higher
threshold setting in all cases may result in lower false alarm
probability but at the expense of less change-point detection
and longer detection delays. The minimum idle/busy state
sojourn time is set to 600µS in all three cases. For fair
comparison, we assume that whenever a false alarm is raised
prior to a state change from busy to idle, the following idle
period is not used by the CR. However, in practice a CR
may still make use of some portion of the idle period using
the multi-variate parallel detection scheme. As we can see,
slightly shorter detection delays are achieved by using the
average sample power based QD, compared to that using the
cyclostationarity-based features. However, by exploiting the
power/cyclostationarity diversity, the multi-variate parallel QD
scheme yields superior performance, in terms of both lower
detection delays and lower false alarm probabilities for each
sensing duration compared to the other two schemes. Although
similar probabilities of change-point detections are achieved
for all three schemes, the multi-variate parallel scheme yields
much higher average percentage of idle channel usage in the
SNR region from −10 to 10dB. It is also shown in Fig. 4(c)
that the average sample power based scheme with sensing
duration of 5uS achieves the highest average percentage of
idle channel usage in SNR region from −16 to −12dB. This
suggests that the average sample power based scheme may be
more efficient in the extreme low SNR region compared to the

other schemes.
From the performance comparisons shown in Fig. 4, we can

also see the tradeoff between the length of sensing duration
and the resulting percentage of usage of the idle state in all
three cases. In particular, the highest percentage of usage is
not necessarily always achieved by using the shortest sensing
duration of 5µS, although it may achieve lower detection
delays. This is due to its limited probability of change-point
detection and comparatively high false alarm probability. Note
that the false alarm probability is related to the ARL to false
alarm. In particular, a shorter ARL to false alarm results in
a higher false alarm probability. Moreover, the lower-bound
of ARL to false alarm in (10) is given in terms of number of
steps, but not in terms of the absolute time length. As a result,
when using a shorter sensing duration for each step (with the
same threshold value), false alarms are raised more frequently
since there are more sensing steps prior to any change-point
compared to that using a longer sensing duration for each step.
This also points out the disadvantage of performing QD using
individual samples (for example, the traditional individual
sample power-based QD scheme proposed in [10]), which can
be considered as the extreme case of using a short sensing
duration.

The optimal setting of the sensing duration and the test
threshold may not be easy to be derived analytically (since
they depends on the pre and post-change distributions of the
observations, which are assumed unknown in the first place).
However, suitable machine learning (adaptive) techniques [26]
may help in practice to find the optimal or a near-optimal
solution. In particular, by using the proposed parallel on-line
QD/off-line change-point detection scheme, performance feed-
back of detection delay and false alarm probability may help
to estimate/predict the idle channel usage for any particular
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setting. Then, an appropriately chosen machine learning algo-
rithm may be used to find the optimal/near optimal solution.

V. CONCLUSIONS

In this paper, we proposed non-parametric quickest detec-
tion schemes to keep track of the state changes (idle/busy)
of communication channels. This capability can be useful
for future cognitive radios, since prior information on the
statistics of channel usage is generally hard to obtain in
practice. We also proposed a novel average sample power
and cyclostationarity-based multi-variate parallel quickest de-
tection/offline change-point detection scheme to improve de-
tection performance compared to the traditional energy-based
methods. The performance of the proposed detection schemes
is evaluated through simulations. Compared to traditional
energy-based quickest detection schemes, smaller detection
delays and higher percentage of spectrum usage are obtained
using the schemes proposed in this paper. The incorporation of
the decision-making for wide-band spectrum sensing schedul-
ing, and the evaluation of communication throughput are left
as future work.
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