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Abstract—Dynamic spectrum leasing (DSL) was proposed
recently as a new paradigm for dynamic spectrum sharing (DSS)
in cognitive radio networks (CRN’s). In this paper, we propose a
new way to encourage primary users to lease their spectrum: The
secondary users (SU’s) place bids indicating how much power
they are willing to spend for relaying the primary signals to
their destinations. In this formulation, the primary users achieve
power savings due to asymmetric cooperation. We propose and
analyze both a centralized and a distributed decision-making
architecture for the secondary CRN. In the centralized architec-
ture, a Secondary System Decision Center (SSDC) selects a bid
for each primary channel based on optimal channel assignment
for SU’s. In the decentralized cognitive network architecture,
we formulate an auction game-based protocol in which each SU
independently places bids for each primary channel and receivers
of each primary link pick the bid that will lead to the most power
savings. A simple and robust distributed reinforcement learning
mechanism is developed to allow the users to revise their bids
and to increase their rewards. The performance results showthe
significant impact of reinforcement learning in both improving
spectrum utilization and meeting individual SU performance
requirements.

Index Terms—Cognitive radios, cooperative communications,
distributed dynamic spectrum leasing, dynamic spectrum access,
dynamic spectrum sharing, auction game, game theory.

I. I NTRODUCTION

I N [1], [2] the authors introduced the concept ofdynamic
spectrum leasing(DSL) as a new paradigm for dynamic

spectrum sharing (DSS) in cognitive radio networks (CRN’s).
They were motivated by the observation that the passive
participation, or rather the non-participation, of primary users
as assumed in the previously proposed dynamic spectrum
access (DSA) schemes is inefficient in terms of fully utilizing
the spectrum. This is because, in DSA, the secondary users
(SU’s) are responsible for managing the spectrum sharing pro-
cess while not compromising the primary Quality-of-Service
(QoS). The primary users do not have a stake in the process,
and thus act completely oblivious to the existence of the SU’s
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as well as the ongoing dynamic spectrum coexistence. On the
other hand, in the Dynamic Spectrum Leasing framework, as
originally proposed in [1], [2], the primary users are allowed to
proactively manage the amount of secondary activity in their
licensed spectrum band. Earlier, the idea of spectrum leasing
was proposed as a static or offline spectrum sharing technique
[3]. However, a similar concept to [1], [2] was proposed in
[4], but the latter case relied on cooperative communications
between primary and secondary users and does not consider
an underlay cognitive architecture as in [1], [2]. The Dynamic
Spectrum Leasing presumes that there is a reward for primary
users for accepting secondary activity whenever it is afford-
able without compromising their own QoS. Cognitive Radios
(CR’s) as envisioned in [5] as radio devices capable of learning
and adapting to their RF environment, make an ideal platform
for both DSS in general.

As mentioned earlier, the DSA architecture does not con-
sider any participation from the primary system in determining
the spectrum sharing process. It was shown in [1], [2], [6]–
[9] that both primary and secondary systems could benefit if
the primary users were to play an active role, however small,
in managing the spectrum sharing process. The Dynamic
Spectrum Leasing is shown to be implementable in a game
theoretic framework in which both primary and SU’s are
considered as the players, in contrast with DSA in which only
SU’s are assumed to be the players. Previous Dynamic Spec-
trum Leasing proposals focused only on spectrum underlay
architectures. Thus, the utility of primary users in previously
considered Dynamic Spectrum Leasing games was expressed
as a monetary reward proportional to the tolerated interference
from the SU’s. The utility of SU’s were allowed to be of many
forms, as in previous DSA proposals. For example, these could
be secondary throughput or energy efficiency [1], [10].

In this paper, we propose a completely new way to en-
courage primary users to lease their spectrum, whenever
affordable: Rather than a monetary reward, in the proposed
framework the primary reward is accrued in terms of savings
on their communication resources, namely the power. This is
achieved by proposing an asymmetric cooperative communica-
tions architecture in the combined network consisting of both
primary and secondary systems. The proposed asymmetric
cooperative communications can be realized with very little
inter-system information exchange. Note that, user coopera-
tion has previously been considered for data transmission in
cognitive networks albeit without the assumption of Dynamic
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Spectrum Leasing [11]–[13]. Indeed, they only considered
spectrum underlay models in which secondary nodes relay
the primary signal to its destination, in order to mitigate the
effect of additional interference to the primary caused by the
secondary signals. In the proposed framework, the SU’s spend
a portion of their transmit powers to asymmetrically relay the
primary signals to their destinations. This asymmetry results
from having the SU to relay the primary signal while the
primary user transmits only its own signal. In return, the
primary users lease a certain portion of their spectrum resource
to the SU’s. This could be interpreted as having the SU’s
to use their power as currency to buy the bandwidth, thus
establishing an exchange rate between power and bandwidth.
In this formulation, the primary reward is the power sav-
ing they achieve due to cooperative relaying. Compared to
previous Dynamic Spectrum Leasing proposals [1], [2], [6],
[7], we also relax the assumption of a centralized primary
system: In our proposal, eachprimary link (i.e. transmitter
and a receiver pair) is allowed to act autonomously in making
decisions on spectrum leasing. It will entertain bids from
the secondary system specifying how much power would be
spent for relaying primary signals. The Dynamic Spectrum
Leasing game, thus, leads to an auction in which primary
users act as the auctioneers. On the other hand, we propose
cooperative communications-based Dynamic Spectrum Leas-
ing frameworks suitable for both centralized and decentralized
CRN’s. The centralized cognitive network model assumes that
there is Secondary System Decision Center (SSDC) [14] that
is responsible for making spectrum leasing decisions for the
whole secondary system. The SSDC decides which SU should
cooperate with which primary user/link. Such decision-making
by the secondary system allows it to better negotiate with the
primary users. However, each primary user may accept an
offer of cooperation with a SU picked by the SSDC only if
this would result in at least a certain minimum power saving.
If the offer is too low, the corresponding primary user may
simply decline the offer and the access to its channel would
be denied until the next bidding interval. Each primary user
may keep its threshold power level as private information so
as to encourage bids as high as possible from the secondary
system.

While it gives the secondary system to have more control
over its relaying power bids, the feasibility of centralized
decision-making in CRN’s that operate as secondary systems
may be questionable. It requires dedicated (control) channels
with enough bandwidth to support reporting of all spectrum
sensing (in this case primary leasing offers) measurementsat
distributed CR’s to the SSDC, as well as channel and power
allocation decisions from the SSDC back to the distributed
radios. While such centralized models are widely assumed in
existing literature [7], [15], [16], it is not clear how realistic
they might be in practice. On the other hand, we believe
that true CR’s may very well be the one’s that can operate
autonomously, yet efficiently. Thus, next we consider a sec-
ondary CRN in which users make their own spectrum access
decisions without any centralized control. In such a decentral-
ized secondary network, SU’s may compete with each other
in order to gain access to available primary channels. This
leads to a newdistributed dynamic spectrum leasing(D-DSL)

Fig. 1. Distributed dynamic spectrum leasing (D-DSL) in an OFDMA-based
wireless network. Each user/link dynamically decides to lease anαi fraction
of its allocated sub-carriers.

architecture that may be suitable for future heterogeneous
wireless network scenarios. The proposed auctioning-based D-
DSL framework is applicable to both spectrum interweave and
underlay architectures.

We believe that sophisticated autonomous learning to be the
defining feature of future CR’s. In a decentralized CRN, the
SU’s who do not win a favorable channel at the beginning of
the dynamic spectrum auction process will employ cognitive
learning to win a bid for a channel in subsequent bidding
times. Each winning secondary node (one per each primary
channel) may also use learning to revise its bid in subsequent
bidding times to improve its own power savings. In this paper,
we develop a simple, yet robust, reinforcement learning mech-
anism to achieve distributed and autonomous learning from the
past experience without any supervision. We show that without
any centralized control both primary and secondary radios can
learn to arrive at an equilibrium in a completely distributed
Dynamic Spectrum Leasing framework. Note that, recently
there has been a growing interest in applying Reinforcement
Learning techniques to CR’s [17], [18]. It permits the cognitive
users to learn by interacting with their environment. Other
learning method can be found in the literature, such as the
Markov model and neural networks [19], [20]. However, these
methods are of little interest when there is no full knowledge
about the system or in the absence of supervision. That’s why
we propose a reinforcement learning technique and we show,
through simulations, how effective the proposed auction-based
D-DSL framework in utilizing the spectrum resources as well
as the significant impact of reinforcement learning in both
improving spectrum utilization and meeting individual SU
performance requirements.

The rest of this paper is organized as follows: Section II
defines the system model, Sections III and IV describe the
proposed Dynamic Spectrum Leasing model with both the
centralized and decentralized CR architectures, respectively. In
Section V we show the simulation results, and finally, Section
VI concludes the paper by summarizing our results.

II. SYSTEM MODEL

The centralized Dynamic Spectrum Leasing (C-DSL) ar-
chitecture of [7] assumes that all primary and SU’s coexist
in the whole spectrum band of interest. However, in almost
all wireless systems the total spectrum is usually divided
into a multiple number of (primary) channels. A channel
allocation scheme either dynamically or statically allocates
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these channels to primary user, as needed. In the following
we assume that there areL primary users/links onL distinct
primary channels. Thus, we will use the terms primary user,
primary channel and primary link interchangeably. To be
general, let us assume that the allocated bandwidth of channel
i ∈ C = {1, · · · , L} is Wi. At this point, it is perhaps
worth mentioning that these channels do not have to be
necessarily frequency channels. For example, they could be
TDMA channels, in which case the channel resource would
be the time slot lengthTi of channel/useri. Also the proposed
D-DSL architecture can be adapted for an OFDMA-based
primary system, in which thei-th primary user can be assumed
to be allocated anLi number of OFDMA sub-carriers as in
Fig. 1. In the following, to save space, we will always discuss
things in the context of primary channels being distinct FDMA
channels. For simplicity, in this paper, we will also assumethat
each SU has the capability to transmit only over one channel
at a time, and that each primary TX-RX pair (link) is allowed
to be leased to only one SU at a time.

The time horizon is assumed to be split into time frames
of durationTf each by the primary system, and each time
frame is divided into a number of equal-length time slots. We
assume that the channel fading varies slowly within a time
frame, and thus fading can be considered constant in this time
duration. The fading model that we consider can represent
the slow-fading channels that result from large-scale changes
in the user’s location. A possible scenario could occur when
a CR moves for a long duration in a certain region, which
would change the average power that is received by the CR
at each location [21]. Suppose that the maximum transmit
power of i-th primary user isP̄i. As required QoS, the RF
interference and the observed channel fading (state) conditions
change from one time frame to another, thei-th primary user
may be able to achieve its required QoS by using only(1−αi)
fraction of its allocated bandwidthWi, for αi ∈ [0, 1]. This
is the origin of the so-called spectrum holes that leads to
the spectrum under-utilization. In existing proposals forDSS
based on DSA, the primary users do not pay any attention
to this phenomenon, and the SU’s are expected to sense the
spectrum and detect these opportunities: Whichever the SU
that successfully detects these seemingly random spectrum
holes will get to access them, perhaps on a contention-basis.
Certainly, according to existing DSA proposals, there is no
reason for the primary users to pay any attention to who
accesses these white spaces, because they do not have anything
to gain. By default, in DSA proposals, the focus is onjust
utilizing the spectrum holes rather thanefficient utilizationof
spectrum holes.

In contrast, according to our proposed D-DSL framework,
if at the beginning of a time frame thei-th primary user
determines that it can achieve its required QoS by using only
(1 − αi) fraction, for 0 ≤ αi ≤ 1, of its bandwidthWi (or
sub-carriersLi, or time slotTi), then itconsciouslydecides to
free-up up to anαi fraction of its bandwidthWi for SU’s to
lease. Note that, if there is frequency selective channel fading
across the bandwidthWi, then thei-th primary user will have
the freedom to decide which parts of its allocated bandwidth
to be freed-up. Although this may be an important aspect in
practice, to avoid notational complexity, in this paper we will

Fig. 2. Distributed dynamic spectrum leasing (D-DSL) basedon auction
game.

assume that each primary channel is frequency flat. Thus, to
be concrete, we may assume that always the lastαiWi portion
of each channel will be freed-up.

We assume that there areKs number of SU’s, each with
maximum transmit powerP̄j for j ∈ Ks where Ks =
{1, · · · ,Ks}. At the beginning of each time frame, each SU
j ∈ Ks receives allαi’s from i ∈ Ωj whereΩj ⊆ {1, · · · , L}
denotes the set of neighboring primary channels (i.e. the
primary channels that can be sensed) of thej-th SU, as shown
in Fig. 2. Note that theΩj sets are not necessarily disjoint. The
j-th SU uses the available Channel State Information (CSI) to
compute the portionβj,i of its powerP̄j , whereβj,i ∈ [0, 1],
that can be allocated to relay the primary signals of thei-
th channel for eachi ∈ Ωj . Each SU computes this set of
{βj,i}i∈Ωj

such that if it spendsβj,iP̄j amount of its power
to relay thei-th primary user’s signal, it can still achieve a
minimum probability of errorǫ over a transmission bandwidth
of αiWi.

In the following, we first consider the Dynamic Spectrum
Leasing auctions for centralized cognitive secondary networks
and derive the optimal decision-making policies for both
primary and SU’s. Next, we consider the Dynamic Spectrum
Leasing auction based on asymmetric cooperative communica-
tions for decentralized cognitive secondary networks in which
CR’s are equipped with learning capabilities, and derive the
equilibrium point.

III. A SYMMETRIC COOPERATIVE

COMMUNICATIONS-BASED DSL FOR CENTRALIZED

COGNITIVE SECONDARY NETWORKS

Suppose that, at the beginning of a given time frame, the
i-th primary TX determines it can free-up anαi fraction of
its bandwidthWi. The objective of the primary user is to gain
power savings in return via possible asymmetric cooperative
communications facilitated by the SU’s.

The assumed asymmetric cooperative system is depicted
in Fig. 3: The SUj ∈ Ks coherentlyrelays the signal of
the primary useri ∈ C over a link with a fading coefficient
hj,i. For the sake of illustrating the method, we assume a
genie-aided cooperation so that the secondary relay knows the
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Fig. 3. Asymmetric cooperative communication achieved by primary users
with the help of secondary relays.

primary message to be relayed instantaneously. In practice,
this assumption can be implemented by assuming that the
primary and secondary transmitters are close to each others
[22], compared to the other nodes, then, their channel will have
a relatively high gain which allows the primary to transmit its
message to the secondary TX in a short duration. Afterwards,
the primary and secondary TX’s transmit, simultaneously, the
primary message to its destination. Hence, the relayed signal
is transmitted over the bandwidth(1−αi)Wi that the primary
user uses for its own transmission. Note that, this assumption
can be easily dropped by adapting a practical cooperative
protocol at the expense of more elaborate notation [4], [23].
The SU transmits its own signal over the freed-up bandwidth
αiWi. We denote byhi the fading coefficient between the
primary TX i and the corresponding RX, andh(i)

j the fading
coefficient between the secondary TXj and its corresponding
secondary RX, when transmitting over channeli.

A. Primary and Secondary Actions

Suppose that thei-th primary user needs a minimum data
rate ofR(min)

i on its link. While transmitting at its nominal
power level ofP̄i, the rate that a primary user can achieve by
freeing-upαi fraction of its bandwidth for leasing is

Ri(αi) = (1 − αi)Wi log (1 + Γi(αi)) (1)

whereΓi(αi) = |hi|
2P̄i

(1−αi)WiNi
is the resulting signal-to-noise

ratio (SNR). Suppose that with the current realization of CSI
hi on the primary link, it can achieve a rate ofR(min)

i with
only using a minimum of(1−α

(max)
i ) fraction of its bandwidth

(if it transmits at its nominal transmit power̄Pi). Then, the
primary i may free-up anαi ∈ [0, α

(max)
i ] fraction of its

spectrum resource without degrading its QoS.
Each SU j ∈ Ks receives allαi’s from primary users

i ∈ Ωj , as shown in Fig. 4, and computes the power fractions
βj,i’s for all i ∈ Ωj so thatβj,i ∈ [0, β

(max)
j,i ] whereβ(max)

j,i

is the maximum power fraction it can allocate to relaying the
i-th primary user signal while maintaining a minimum Bit
Error Rate (BER) ofǫ with respect to its own receiver over
the channeli (the portionαiWi):

β
(max)
j,i = arg max

βj,i∈[0,1]
βj,i s. t. P (j,i)

e (βj,i) < ǫ , (2)

where P
(j,i)
e (.) is the BER of thej-th secondary link if

transmitting on primary channeli. If SU j gets to to transmit

over channeli, then it will receive a utility of:

uj(βj,i, αi) = αiWi log (1 + γj,i) q (ǫ− Pe(βj,i)) , (3)

where γj,i =
P̄j(1−βj,i)|h

(i)
j

|2

αiWiNi
is the SNR of the SUj on

the leased channel of primaryi, and q(.) is the unit-step
function. When employing BPSK transmission,Pe,j,i(βj,i) =

Q
(√

γj,i
)

for anyαi 6= 0, so thatβ(max)
j,i can be obtained by

numerically solving (2). Ifαi = 0, we let β(max)
j,i = 0 for

all j ∈ Ks, meaning that SU’s will not relay primary user’s
signal who is not willing to lease any portion of its available
bandwidth.

Suppose that the primary users decide to free-up the spec-
trum segments{αiWi}Li=1. If the objective of the cognitive
users is to maximize the secondary network sum-rate, the
optimal choice would be to letβj,i = 0 for ∀j and∀i. This will
enable the SU’s to use all their power resources exclusivelyfor
the secondary transmission. Of course, the primary users then
will not have an incentive to lease spectrum, and thus would
rather keep transmitting over the whole spectrum without
freeing any portion. Thus, in our proposed C-DSL model, we
assume that each primary user expects to be able to reduce
its transmit power below a certain thresholdP th

i ≤ P̄i due
to the cooperative communication advantage with the SU’s.
In general, this thresholdP th

i of user i ∈ C is unknown to
the SU’s. Hence, in our C-DSL model, if a primary user does
not receive an offerβj,i from the secondary system that will
enable it to meet the target power reduction it expects, it may
not accept the offer and not lease the spectrum portion. For
that reason, the SU’s will attempt to choose theirβj,i values
closer toβ(max)

j,i .
In our proposed model, each SU may pick theβj,i fraction

using a particular distribution, or weighting, over[0, β(max)
j,i ]

(not necessarily uniform). For example, if it has a large battery
life remaining it can pick a value closer toβ(max)

j,i and vice
versa. Thus, a possible method for picking upβj,i could be as

β
(max)
j,i

(

1− e−aT
(res)
j

)

, whereT (res)
j is the residual battery

life of the j-th SU.

B. Optimal Channel Assignment at the SSDC

In a centralized cognitive secondary network, we may
assume that an SSDC is responsible for making the secondary
bid decisions, and then broadcasting these decisions to the
SU’s through a control channel [14]. At the beginning of
each time frame, each SU computes the fractionβj,i of its
power that it is willing to allocate for relaying the primary
signal, and informs theseβj,i values to the SSDC through
a control channel. The SSDC uses theβj,i values and the
knowledge of channel fading coefficients to determine the
channel assignment for each SU so as to maximize the
secondary system’s sum-rate, as shown in Fig. 4, wherej(i)
denotes the index of the SU that is assigned to transmit over
the channeli ∈ C. If none of the SU’s is assigned to channel
i, we let j(i) = 0 (0 denoting a dummy SU).

We define the mappingφ : Ks → C
⋃

0 as the scheduling
function used by the SSDC that assigns each SU to a primary
channel. We letφ(j) = 0 to denote that SUj is not assigned



JAYAWEERA et al.: ASYMMETRIC COOPERATIVE COMMUNICATIONS BASED SPECTRUM LEASING VIA AUCTIONS IN COGNITIVE RADIO NETWORKS 5

Fig. 4. Secondary System Decision Center (SSDC) operation.

to any primary channel. The optimal channel assignmentφ∗

of SU’s is given by the optimization:

φ∗ = argmax
φ

Ks
∑

j=1

uj(βj,φ(j), αφ(j)), (4)

where uj(βj,i, αi) is as defined in (3). We let
uj(βj,φ(j), αφ(j))|φ(j)=0 = 0, meaning that the utility
of a SU that is not assigned to any available channel is
0. The solution of (4) can be obtained via the Hungarian
algorithm since it can be identified as a bipartite matching
problem that consists of the bipartite setsC and Ks. The
Hungarian algorithm [24] finds the optimal matching between
the elements of the bipartite sets such that it maximizes
the sum of the edge weights. If the edge weight between
primary i ∈ C and secondaryj ∈ Ks is defined to be the
utility uj(βj,i, αi) then this solution leads to the optimal
channel assignment that maximizes the secondary sum-rate.
The advantage of this algorithm is that it can find the optimal
channel assignment at a cubic complexity. A description of
this algorithm can be found, for example, in [11], [25].

At the beginning of each time frame, the SSDC informs
the optimal channel assignmentφ∗(j) to each SUj ∈ Ks.
Afterwards, each SUj ∈ Ks sends, at its maximum power̄Pj ,
the value ofβj,φ∗(j) to its assigned primary user. The primary
user decides whether to accept or reject the offer of cooper-
ation, depending on how much power saving it can achieve
through cooperative communications. The primary users who
accept the offers will start the cooperative communications.
Otherwise, the primary user will reject the offer and will
keep transmitting over its licensed frequency band during the
corresponding time frame.

The primary useri makes its cooperation decision as
follows: It receives the bid from thej-th secondary at a
received power level ofPR

i,j = |hj,i|2P̄j . Then it may compute
the received SNR it will get if the secondaryj transmits at
the bid power level ofβj,iP̄j to be

Γj,i =
βj,iP

R
i,j

(1− αi)WiNi

. (5)

The i-th primary RX then uses either the Maximum-Ratio
Combining (MRC), Maximum-SNR Selection or Coherent
Relay detection to compute the resulting overall SNR, if it

combines the received signals from both paths: direct path
from the i-th primary TX itself and the relayed path from
the secondary nodej. To be specific, in the followings we
will consider coherent relay detection. Denote byRf

i (Pi) the
resulting final primary rate if the primary useri transmits at
a powerPi:

Rf
i (Pi) = (1− αi)Wi log

(

1 +
Pi|hi|2 + P̄jβj,i|hj,i|2

(1− αi)NiWi

)

.

(6)
Let P

(min)
i (βj,i) be the minimum transmit power thei-th

transmitter needs to transmit at to achieveRf
i (Pi) ≥ R

(min)
i

if it accepts thej-th SU’s bid for relaying:

P
(min)
i (βj,i) = P̄i∧

[

(1 − αi)NiWiγ̄i(αi)− P̄jβj,i|hj,i|2
|hi|2

]+

,

(7)

whereγ̄i(αi) = 2
R

(min)
i

(1−αi)Wi −1, x∧y , min{x, y} and[x]+ =
max{0, x}. Then, the primary useri decides to cooperate with
SU j if P

(min)
i (βj,i) ≤ P th

i ≤ P̄i. Note that, in the above
computations, the primary RX assumes that the channel from
primary TX to the secondary relay is error-free. This can be
a reasonable assumption under many scenarios [22], and it is
also possible to modify the above method to take into account
such error at the expense of additional system complexity.
In general, the channel between the primary and secondary
transmitters is not ideal, therefore, (6) can be consideredas
an upper bound on the primary transmission rate, which is
still a valid criterion for making the DSL channel allocation
in the general case.

The SU’s who did not get the chance to access a channel
might send new offersβj,i to the SSDC in the followingtime
slotsand the SSDC computes the optimal channel assignment
based on the newβj,i values. Thus, the SU’s in the centralized
CRN may learn to increase their action variablesβj,i within a
time frame hoping that the primary users would accept the new
offers. Conversely, a SUj ∈ Ks that has accessed a channel
i ∈ C in a given time slot might decrease itsβj,i value in order
to reduce the power spent on relaying the primary signal. We
refer to this model as thecentralized CRN with learning, in
contrast with the above describedstatic centralized CRNin
which the SU’s fixβj,i within a time frame.

In a centralized CRN with learning, at the beginning of
each time frame, the SU’sj ∈ Ks determine their bidsβj,i ∈
[0, β

(max)
j,i ] for ∀i ∈ C. In the subsequent time slots, the SU’s

update theirβj,i values and the SSDC computes the optimal
assignment of SU’s to available primary channels (from (4))
based on the newβj,i values, during each of the time slots.
The new bids are sent to the primary users who then will
decide whether to accept or reject those offers. The accepted
SU’s start asymmetric cooperation based transmission on their
assigned channels. At each time slot, the SU’s apply a simple
reinforcement learning algorithm to update theirβj,i values as
follows:

Winning Node:β(new)
j,i = βj,i − IE(j,i)∆β, for β(new)

j,i > 0

Losing Node:β(new)
j,i = βj,i +∆β, for β(new)

j,i ≤ β
(max)
j,i ,

(8)
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where∆β > 0 is some step size andIE(j,i) is the indicator
function of the eventE(j, i) ={SU j has never lost a bid
on channeli in the current time frame}. This reinforcement
learning algorithm converges to fixedβj,i values after a
sufficient number of time slots.

IV. A N AUCTION-BASED DSL PROTOCOL FOR

AUTONOMOUSSU’S

The channel access in a decentralized CRN is based on
the competition among the SU’s. This competition can be
formulated as an auction game in which each SUj ∈ Ks

places a bidβj,i for each primary channeli ∈ Ωj . After
computing its set of bids{βj,i}i∈Ωj

, each SUj sends these
values to corresponding primary receivers (or could be the
same receiver) at its maximum power levelP̄j .

Receivers of each primary link will be responsible for
determining the winning bid for that channel. If there are any
ties among SU’s for winning a particular channel, then the
corresponding primary user will randomly pick one of them.
Each primary user then informs its chosen winning secondary
node of its bid being successful. In some cases, a particular
SU’s bids may be selected by more than one primary channel
as winning bids. Then this SU decides to accept the invitation
to cooperate with the primary channel that permits it to achieve
the largest secondary rate. The remaining channels do not lease
their spectrum to any user, thus encouraging the losing SU’s
to increase their bids on those particular channels in the next
time slot. Once the bid selection is done, then the primary
and winning SU’s start to transmit based on the asymmetric
cooperative communications, as shown in Fig. 3.

The primary users will only recompute theirαi values only
at the beginning of a frame, since channel conditions are
assumed to be almost constant over the duration of a frame.
However, at every time slot, each primary user may adapt
its freed-up channel portionαi so that it receives bids to
cooperate from more SU’s. Similarly, the SU’s are free to
place new bids at the beginning of each time slot within a
given frame. This allows each SU to revise its bids in order to
maximize its chance of getting access to the most favorable
channel, while minimizing the relay powerβj,iP̄j it needs
to spend. Thus, during each frame the primary-secondary
interaction can be modeled as a repeated auction game as
follows:

1) Players: L primary TX-RX pairs onL channels andKs

SU’s.
2) Actions: Primary TX-RX pair i’s action is to choose

αi ∈ [0, α
(max)
i ] such that it satisfies the primary

transmission rate requirements. Each SUj’s action is
to choose a set of power division ratiosβj,i’s, for each
i ∈ Ωj .

Each SU will aim to transmit at the lowestβj,i possible.
However, this might reduce its chances in gaining channel
access because a primary user would prefer a SU that is willing
to spend as much power as possible for relaying its signal so
that it minimizes its transmit powerPi.

A. Selection of Winning Bids for Cooperative Communica-
tions

The objective of primary users in the proposed D-DSL
framework is to minimize their own power expenditure by
exploiting cooperative communications facilitated by SU’s.
This objective is achieved by maximizing the primary utility
function:

ui

(

αi, βj(i),i

)

=
P̄i − Pi(βj(i),i)

P̄i

q
(

Ri(αi)−R
(min)
i

)

,

(9)

where Pi(βj(i),i) is the primary i’s transmit power with
Pi(β0,i) = P̄i indicating that if primaryi does not reach
an agreement with any SU then it will be transmitting at
its maximum power. Thei-th primary receiver then chooses
the SU j that will lead to the smallestP (min)

i (given in
(7)) such thatRf

i (Pi) ≥ R
(min)
i as the winning bid for

asymmetric cooperation on its channel, such thatj(i) ,

j∗ = argminj∈Ks
P

(min)
i (βj,i). The winning bid selection

simplifies to:

j(i) , j∗ = arg max
j∈Ks

βj,iP̄j |hj,i|2. (10)

B. Repeated Auction Game Model for D-DSL with Reinforce-
ment Learning

In the subsequent plays of the repeated game, if the channel
conditions stay fixed, the SU’s can learn the others strategies
and try to win the auction for spectrum leasing. At the begin-
ning of each time slot, primary users take new bidsβj,i. The
SU’s update their bids again using the simple reinforcement
learning strategy given in (8). However, note that in this case
each individual SU updates its own bidβj,i independently of
other secondary users.

On the other hand, the primary users also learn and adapt
their actionsαi at every time step. Primary users take dis-
tinct actions depending on whether a SU was selected for
cooperation or not: A primary user who did not get a SU to
cooperate with will try to increase itsαi values so that more
SU’s becomes interested in cooperating with it, and vice versa.
The primary learning algorithm is as follows:

Coop.: α
(new)
i = αi −∆α for α

(new)
i > 0

No Coop.: α(new)
i = αi +∆α for α

(new)
i ≤ α

(max)
i ,

where∆α > 0 is some step size. However, when the primary
users are adapting theirαi according to the secondary actions,
the values ofαi might decrease and thus, the sum rate of
SU’s might decrease as well. For that reason, we assume that
primary users learn with a probabilityζ ∈ [0, 1], meaning that
they adapt their actions in each time slot (within alearning
period) with a probabilityζ. The learning periodconsists of
Kl time slots at the beginning of a time frame. Theαi values
are not supposed to change outside alearning period.

C. Equilibrium of the Reinforcement Learning in the D-DSL
auction game

Given our proposed D-DSL model, we observe that the
auctions are independent among all the primary channels.
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Thus, we can analyze the equilibrium on each channeli ∈ C

separately. Obviously, theβj,i values may converge only if
{αi}i∈C are fixed during a certain period.

By applying the reinforcement learning algorithm in (8),
and after sufficiently many time steps, the winning SU on
channeli ∈ C will be (at equilibrium):

ĵ(i) , ĵ = arg max
j∈Ks

β
(max)
j,i P̄j |hj,i|2 . (11)

In this case, the equilibrium point is obtained as:

β̂ĵ,i = max
k 6=ĵ,k∈Ks

β
(max)
k,i

P k|hk,i|2
P ĵ |hĵ,i|2

+∆β − δ, (12)

for someδ ∈ [0,∆β]. Also, at equilibrium,β̂k,i = β
(max)
k,i for

all k 6= ĵ.
Moreover, if ∆β → 0, then β̂ĵ,i →

maxk 6=ĵ,k∈Ks
β
(max)
k,i

Pk|hk,i|
2

P
ĵ
|h

ĵ,i
|2

. In this case, it can be

easily verified that the equilibrium point of the reinforcement
learning algorithm converges to the Nash equilibrium of a
second-price auction [26].

V. PERFORMANCERESULTS

To verify the convergence of the proposed asymmetric
cooperative communications based D-DSL framework imple-
mented as an auction game, we consider primary system with
L = 3 and a secondary system havingKs = 5 users. We
also assume Rayleigh fading channels withE

{

|h|2
}

= 1.
The maximum transmit power of the primary and SU’s are
P̄i = 30mW and P̄j = 30mW , respectively. We assume
that all channels have a bandwidth (Wi = 10kHz), and
the noise level at the receivers isNi = 0.1µW/Hz. The
minimum transmission rate requirement of a primary user is
set toR(min)

i = 10kbps and we assume that SU’s require a
BER smaller thanǫ = 0.05. The primary system is assumed
to be static by havingζ = 0, and we set the step size of the
secondary learning algorithm to∆β = 0.02. First, we show in
Fig. 5 the convergence of the secondary action variablesβj,i

as a function of time, over3 time frames with50 slots each.
In Fig. 6, we let L = 3 and Ks = 3 and plot the

secondary sum-rate and the average per-user primary power
as a function ofP̄j , for both centralized and decentralized
CRN’s, implemented based on either a static or a learning
framework. Note that the static scenario refers to settingαi to

α
(max)
i andβj,i to β

(max)
j,i

(

1− e−aT
(res)
j

)

during the whole

frame duration, wherea = 1
30∗number of slots/frameand T

(res)
j

is the total remaining number of slots at the beginning of a
frame. In each of the centralized or decentralized CRN’s, the
learning permits the secondary network to achieve a higher
sum-rate, compared to the static scenario. Moreover, in either
case, we observe that the centralized CRN outperforms the
decentralized CRN only if̄Pj ≥ 50mW . This is because when
the secondary system is centralized, thei-th primary user will
agree to cooperate with a SU only if cooperation leads to
it being able to transmit at a power level less than a certain
threshold level ofP th

i . SinceP th
i is unknown to the SU’s, this

forces them to allocate at least a minimum amount of power
to relay the primary message, if they are to have any chance
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of winning access to thei-th primary channel, fori ∈ C.
Therefore, the SU’s will have an upper bound on the amount of
power that they can use to transmit their own signals. However,
if the secondary network is decentralized, the minimum power
allocated to relay the primary message is only based on the
competition among SU’s. In this case, the primary users do
not have the expectation to reduce their own transmit power
below a hard threshold (such asP th

i for i ∈ C). Instead, they
accept the best bid from the competing SU’s, irrespective of
how much small this bid is. This difference makes both the
primary power savings as well as the secondary sum-rate to be
lower in the centralized case compared with the decentralized
case when the secondary powerP̄j is very small.

Figure 6 also shows the average power spent by each
primary user in each of the above mentioned scenarios. The
average power spent by a primary user will be the highest, if
the CRN is equipped with learning capabilities, in either the
centralized or the decentralized case. In a CRN with learning,
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the SU’s learn to allocate just the minimum necessary power
to relay the primary signals, while still gaining access to the
primary channels. However, if the CRN is static, the SU’s try
to place highβj,i values at the beginning of the time frame
because they will not have another chance to adapt their action
variables within the same time frame. As a result, the primary
users will take advantage of the static behavior of the CRN
and achieve higher power savings. On the other hand, Fig. 7
shows that the sum-rate of SU’s increases with the number of
SU’s (Ks) because of the increased diversity. It shows also that
a significant gain can be achieved in the secondary sum-rate
when the SU’s employ reinforcement learning.

In Fig. 8 we plot the the secondary sum-rate versus learning
step-size∆β. We observe that the secondary sum-rate reaches
a maximum near∆β = 0.06. Note that, a small step size
could slow down the convergence to the optimal point and a
large step size makesβj,i to deviate from the equilibrium of
the second-price auction. Therefore,∆β should be carefully
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adjusted in order to take advantage of the learning procedure.
Finally, in Fig. 9, we allow the primary users to adapt

their actions during the first25% of each time frame, and
we show the effect of the primary learning on the secondary
throughput. We see that the secondary performance degrades
as the primary users try to learn more frequently. In fact,
the primary learning procedure allows the primary users
to decreaseαi, which reduces the available bandwidth for
secondary transmission. Of course, it is more advantageous
for SU’s to cooperate with a static non-adaptive primary
system, which will facilitate the adaptation of SU’s to their
environment and prevent them from being exploited by the
primary users.

VI. CONCLUSION

In this paper, we have proposed both centralized and dis-
tributed Dynamic Spectrum Leasing architectures that allow
primary users to reduce their power expenditure by using the
SU’s as relay nodes. In return for this asymmetric cooperative
communication gains, primary users free-up a portion of
their spectrum resources to SU’s. In the centralized case, we
derived the optimal channel assignment of SU’s by using the
Hungarian algorithm. Also, we developed a repeated auction
game for D-DSL, in which the autonomous SU’s learn by
interacting with their environment so that they distributively
reach an equilibrium. We proposed a reinforcement learning
algorithm for both primary and SU’s to learn and revise
their actions. Our simulation results showed that the proposed
reinforcement learning permits to enhance the performanceof
both centralized and decentralized CRN’s.
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