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Abstract—We consider a decentralized cognitive radio network
in which autonomous secondary users seek spectrum opportu-
nities in licensed spectrum bands. We assume that the primary
users’ channel occupancy follows a Markovian evolution, and
formulate the spectrum sensing problem as a Decentralized
Partially Observable Markov Decision Process (DEC-POMDP).
We develop a distributed Reinforcement Learning (RL) algorithm
that allows each autonomous cognitive radio to distributively
learn its own spectrum sensing policy. The resulting decentralized
sensing policy enables secondary users to non-cooperatively reach
an equilibrium that leads to high utilization of idle channels
while minimizing the collisions among secondary cognitive radios.
Moreover, we propose a decentralized channel access policy that
permits controlling, with high accuracy, the collision probability
with primary users. Our numerical results validate the robustness
of this collision probability control as the sensing noise changes.
They also show the efficiency of the proposed learning algorithm
in improving the spectrum utilization.

Index Terms—Cognitive radio, reinforcement learning.

I. INTRODUCTION

Opportunistic Spectrum Access (OSA) [1] has been en-

visioned as a promising technique to exploit the spectrum

vacancies, which permits unlicensed secondary users to access

the primary channels opportunistically when the primary users

who own the spectrum rights are not transmitting. Cognitive

Radio (CR) devices have been founded as a platform to realize

such OSA techniques. In general, CR’s are assumed to be able

to sense and adapt to their Radio Frequency (RF) environment.

In this paper, we consider a decentralized CR network in

which each secondary user tries to obtain, independently, the

best estimate of the status of the primary channels based on

its own local information. In particular, when the primary

channel states follow a Markovian evolution, a cognitive user

can utilize its history of observations and actions in order to

derive a better sensing/accessing policy. This problem can then

be formulated as a Decentralized Partially Observable Markov

Decision Process (DEC-POMDP) and has been discussed

in several recent studies. For example, in [2], the authors

suggested a Medium Access Control (MAC) protocol for

decentralized ad-hoc CR networks by modeling the system

as a POMDP that is equivalent to a Markov Decision Process

(MDP) with an infinite number of states. The corresponding

optimal sensing policy that maximizes the total discounted

return was shown to be computationally prohibitive. Thus, an

optimal myopic policy was derived such that it maximizes the

instantaneous rewards. The myopic policy that was formulated

in [2] is optimal for a single-user setup, and is suboptimal

when applied to a multiuser setting because it would lead

to collisions between secondary users when more than one

user try to access the same channel. On the other hand, in

[3] the authors proposed three different sensing policies for

multiuser OSA: The first policy is based on a cooperative

protocol in which secondary users exchange their beliefs about

the channel states at each time slot. The second policy applies

learning techniques to obtain an estimate of the other users’

beliefs, and the third policy is based on a single-user approach

in which the cognitive users act non-cooperatively. We note

that [3] assumes perfect sensing of the primary channels,

which we do not assume throughout this paper.

In [4], a suboptimal sensing/access policy was derived for

cooperative cognitive networks since it is not easy to solve the

Bellman equation that corresponds to the formulated POMDP

model. However, the assumed model did not ensure full

utilization of spectrum resources because only one primary

channel was accessed at each time instant collectively by all

secondary users. This leads to low network throughput since

all the secondary users are assumed to sense the same primary

channel at a time. The main advantage of this model, however,

was that it achieves better sensing performance. The trade-off

between the sensing accuracy and the secondary throughput

has been discussed recently in [5].

We believe that the solution to these issues is to make

the so-called CR’s indeed cognitive, i.e. to achieve smart

performance, the CR’s should have the ability to learn from

their observed environment and the past actions. Indeed, it can

be argued that learning from experience must be at the heart

of any cognitive system. Recently, this view is gaining impor-

tance within the CR research community as is evident by the

application of learning techniques to CR’s. For example, the

multi-agent Reinforcement Learning (RL) algorithm, known as
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Q-Learning, was applied in [6] to achieve interference control

in decentralized Wireless Regional Area Networks (WRAN).

In [7], the authors developed a Q-learning algorithm for an

auction-based dynamic spectrum access protocol, which is

different from the DEC-POMDP structure of our proposed

model. To the best of our knowledge, none of the CR studies

that assume an underlying POMDP structure has used the Q-

learning algorithm to solve the OSA problem [2]–[4]. The

literature on learning techniques to achieve CR goals is still

at an infancy, although there is a rich literature on machine

learning in computer science and classical statistical learning

that provides a great starting point [8].

In this paper, we formulate the channel sensing in de-

centralized cognitive networks as a DEC-POMDP problem.

Unlike [2], our approach considers a multi-user setting and

we propose a channel sensing policy that takes into account

the collisions among secondary users. Our proposed sensing

policy is based on the distributed RL. Note that, we use the RL

to derive the sensing policy rather than to obtain interference

control as in [6]. This algorithm achieves two main goals:

Deriving a sensing policy based on the history of actions and

observations, and minimizing the collisions between secondary

users while competing for channel access opportunities. On the

other hand, we propose a channel access mechanism that limits

the collisions between primary and secondary users when

secondary users have noisy observations about the primary

channels. Our channel access scheme ensures high accuracy

and robustness in controlling the collision probability with

primary channels, thus guaranteeing the Quality of Service

(QoS) requirements of primary users.

The remainder of this paper is organized as follows: Section

II defines the system model. In sections III and IV, we derive

both the accessing and sensing policies for cognitive users. We

show the simulation results in section V. Section VI concludes

the paper.

II. SYSTEM MODEL

We consider a wireless network having a set of primary

channels C = {1, ..., L}. The channels’ occupancy states

are assumed to be independent and following a Markovian

evolution. A set of distributed users form a secondary network

that is assumed to rely on cognitive techniques to access these

primary channels when they are idle. The set of secondary

users in the system is denoted by Ks = {1, ..., Ks}. The

secondary network forms a multiple access channel in which

each secondary user independently searches for a spectrum

opportunity in order to communicate with a secondary base

station, as depicted in Fig. 1. Every secondary user j ∈ Ks

is assumed to be able to sense only one primary channel at a

time, and we assume that secondary users do not cooperate.

This is a reasonable assumption in decentralized networks in

which there is no control channels for ensuring collaboration

among secondary users.

We identify the overall system made of primary channels

and the Ks-secondary users as a DEC-POMDP [9] by defining

the state of the system as s(k) = (s1(k), ..., sL(k)) ∈ S

Fig. 1. Cognitive Radio Network (CRN) with distributed secondary nodes

where si(k) ∈ {0, 1} represents the state of channel i ∈ C
as being idle (0) or busy (1) in time slot k, and S is the set

of all possible states s(k). We define a , (a1, · · · , aKs
) as

the joint action of all secondary users (agents) and P (s,a, s′)
to be the probability of transition from state s to s′ when

taking the joint action a. The transitions of every channel’s

state are independent of the other states and these transitions

are assumed to follow a Markovian evolution as mentioned

above. The state transition matrix P of the state vector s(k) is

therefore P = P1 ⊗ · · · ⊗PL, where Pi is the state transition

matrix of channel i, and ⊗ denotes the Kronecker product.

Note that, the transition probabilities P (s,a, s′) (for

(s, s′) ∈ S2) are independent of the secondary user actions

since they are determined by the evolution of the primary

channels states, i.e. P (s,a, s′) = P (s, s′), where P (s, s′) is

obtained from the state transition matrix P. Similarly, for an

individual channel i ∈ C, the transition probabilities Pi(l, l
′)

(for (l, l′) ∈ {0, 1}
2
) are obtained from Pi.

The action of secondary user j ∈ Ks at time k is denoted

by aj(k) ∈ C which represents the index of the primary

channel that user j ∈ Ks should sense during time slot

k. We define Yi(k, j) to be the observation of secondary

j ∈ Ks on channel i ∈ C in time slot k which is assumed

to be the output of a Binary Symmetric Channel (BSC) where

Pr{Yi(k, j) 6= si(k)} = νi is the crossover probability. As

a result, Yi(k, j) is a discrete random variable with distinct

probability mass functions (pmf) f0 and f1 when si(k) = 0
and si(k) = 1, respectively.

Let Yk
i (j) denotes the vector of observations up to time

slot k obtained by secondary j ∈ Ks on channel i ∈ C. Let

Kk
i (j) denote the time slot indices up to slot k when channel i

was sensed by secondary user j. Also, let Yk(j) = {Yk
i (j) :

i ∈ C} be the collection of observations up to slot k on all

primary channels obtained by the j-th secondary user.

III. CHANNEL ACCESS MECHANISM

The sensing and access operations of the secondary users

are scheduled as is shown in Fig. 2, where we consider that

a secondary user senses a primary channel during the sensing

period τ . Primary users are assumed to always start their



Fig. 2. Channel Access Policies

transmission at the beginning of a frame of duration Tf so

that a primary channel will remain free during the secondary

access duration if it was free during the corresponding sensing

period.

A cognitive device that has sensed a channel can access that

channel during the remaining frame duration of Tf−τ . In order

to avoid collisions among secondary users, we assume that

each secondary user generates a random backoff time before

transmitting [2]. If more than one secondary users decide to

access the same channel, the channel access will be granted

to the secondary user that has the smallest backoff time.

After sensing channel i = aj(k), secondary user j ∈ Ks

decides whether to access channel i based on its observation

sequence yk
i (j) , {yi(k

′, j) : k′ ∈ Kk
i } where yi(k

′, j) is

a realization of Yi(k
′, j). In order to achieve a probability of

collision below a certain bound, we may apply a Neyman-

Pearson (NP) type detector [10]. An optimal access decision

for the j-th secondary user would choose one of the two

possible hypothesis H1 = {si(k) = 0} or H0 = {si(k) = 1}
in time slot k based on the whole observation sequence yk

i (j).
However, implementing such an optimal detector becomes too

complicated due to the need for computing the distribution

of the likelihood ratio of Yk
i (j) which is a random sequence

whose length increases linearly with time. Hence, we simplify

the detection rule by assuming that the decision to access a

channel in time slot k is based only on the current observation.

Let α be the false alarm probability such that α ≤ 0.5. The

optimal NP detector then is as randomized access decision rule

δ̃i(k, j) for secondary j to access channel i at time k. This

access decision can be viewed as a binomial random variable

denoted by δi(k, j) whose parameter δ̃i(k, j) is given by:

δ̃i(k, j) =

{

α
νi
I{yi(k,j)=0}I

(k)
i,j if α < νi

(

I{yi(k,j)=0} + α−νi

1−νi
I{yi(k,j)=1}

)

I
(k)
i,j if α ≥ νi

where I
(k)
i,j = I{aj(k)=i}, and IB = 1 if condition B is

satisfied, and 0 otherwise. Therefore, secondary user j decides

to access a sensed channel i in time slot k only if δi(k, j) = 1,

which happens with probability δ̃i(k, j).
It can be observed that the collision probability on a partic-

ular channel can go beyond the desired threshold because the

accessing rule in a decentralized network follows an OR-rule.

For that reason, we will design a channel access mechanism

that guarantees a certain collision probability with the primary

channels.

We define Ej,i(k) to be the event that secondary user j ∈ Ks

decides to access channel i ∈ C at time k, given that secondary

user j has sensed channel i at time k. Also, we let Ei(k) to be

the event that channel i ∈ C is busy at time k. When several

secondary users sense and try to access the same primary

channel i ∈ C, we define the resulting collision probability

as Pc(i) = Pr
{

⋃

j∈Zi(k) Ej,i(k)|Ei(k)
}

, where Zi(k) is the

set of secondary users that sense channel i in time slot k.

Note that the events {Ej,i(k)|Ei(k) : j ∈ Ks} are indepen-

dent because each secondary user makes its access decision

independently of the other users, after having sensed the

channel i. As a result, the collision probability on channel

i can be expressed as Pc(i) = 1 − (1 − α)
Zi(k)

, where

Zi(k) = |Zi(k)| and α = Pr {Ej,i(k)|Ei(k)} is the false

alarm probability of each secondary detector that results from

claiming H1 = {si(k) = 0} (or equivalently {δi(k, j) = 1})

when H0 = {si(k) = 1} is true. Therefore, in order to ensure

an overall collision probability Pc(i) = α0 in channel i, each

secondary user j ∈ Zi(k) should set its false alarm probability

to α = 1 − (1 − α0)
1/Zi(k)

.

Since each secondary user does not know the total number

of users Zi(k) that are sensing primary channel i ∈ C at

a particular time k, it uses the expected value of Zi(k)
to compute its false alarm probability such that α = 1 −
(1 − α0)

1/E{Zi(k)}
. We will compute this expected value in the

followings and show, through simulations, that the proposed

access technique can guarantee an upper bound on the collision

between primary and secondary users.

IV. SENSING POLICIES OF DISTRIBUTED SECONDARY

USERS

We define the belief vector of channel i ∈ C as p (k, j, i) =
[p0(k, j, i), p1(k, j, i)] where pl(k, j, i) = Pr{si(k) =
l|Yk−1

i (j)} which represents the probability of si(k) being

in state l ∈ {0, 1} in time slot k, given the past observations

Yk−1
i (j). Let bj(k) =

[

bj(1, k), · · · , bj(2
L, k)

]

be the belief

vector of the primary system according to secondary user j,

where

bj (u (s (k)) , k) =
L

∏

i=1

psi(k)(k, j, i), (1)

given that u(s) ∈ U =
{

1, · · · , 2L
}

is the index of state

s(k) = (s1(k), · · · , sL(k)). The belief vector bj(k) is a

sufficient statistic for an optimal OSA protocol in a single-

user setup [2]. However, in our case, we consider a distributed

multi-user scenario and bj(k) is no longer a sufficient statistic

for optimal decisions. But since we are interested in applying

RL techniques to solve the DEC-POMDP problem, we may

still use belief vector bj(k) to obtain a reasonably good

suboptimal solution in a distributed multi-user setting, as

shown in [6]. This would simplify the problem, yet leading

to near-optimal solutions.

At each time slot, each secondary user updates its belief

vector about the states of the channels in the next slot. Suppose

secondary user j senses channel i = aj(k) in time slot k and

observes Yi(k, j). Then it updates its belief about the state of



Fig. 3. Sensing and Updating the Beliefs

channel i in time k + 1 using Bayes’ formula as follows:

pm(k + 1, j, i) =

∑1
l=0 Pi(l, m)fl(Yi(k, j))pl(k, j, i)
∑1

l=0 fl(Yi(k, j))pl(k, j, i)
, (2)

where m ∈ {0, 1}. For the unsensed primary channels i′ 6=
aj(k), the j-th secondary user’s belief vector is simply updated

based on the assumed Markovian evolution: p(k + 1, j, i′) =
p(k, j, i′)Pi′ ,∀i′ 6= aj(k).

Figure 3 shows the update procedure in which thick arrows

represent the updates using Bayes’ formula, whereas thin

arrows represent the updating of beliefs based only on the

assumed Markovian nature of the channels.

A. The Reward and Value functions

We define the total discounted return of user j ∈ Ks in

time slot k as Rj(k) =
∑∞

n=0 γnrj(k + n), where rj(k) is

the reward of secondary user j in time slot k and γ ∈ (0, 1)
is a discounting factor. In a fully observable MDP, an agent

j ∈ Ks may define the value of a state s in slot k and under

a policy πj as [8]:

V
πj

j (s, k) = E {Rj(k)|s(k) = s} . (3)

Similarly, the function Qj(s, a) is defined as the expected

return starting from state s, taking the action a, and then

following a policy πj thereafter as:

Q
πj

j (s, a, k) = E {Rj(k)|s(k) = s, aj(k) = a} . (4)

In the case of a POMDP, however, the actual state of the

system is the belief vector bj(k). Hence, the resulting process

is an infinite state MDP which makes the solutions of (3)

and (4) computationally expensive. In particular, our assumed

model of a DEC-POMDP is a non-cooperative multi-agent

system whose solution is shown to be NEXP-hard [9]. Hence,

we will solve this problem by finding the Q values of the DEC-

POMDP model by using the underlying MDP model [11], as

explained in the next section.

B. Reinforcement Learning for DEC-POMDP

In the following, we extend the Q-learning algorithm that

is defined for centralized fully observable environments in [8]

by extending it to the partially observable channel sensing

problem. This can be made by assigning a Q(s, a) table for

each secondary user j, where s ∈ S is the channels’ states

vector with u(s) ∈ U =
{

1, · · · , 2L
}

being the index of state

s and a ∈ C is the index of the sensed channel. However, we do

not use the belief vector bj(k) as the actual state. Instead, we

solve for the values of Q(s, a) in the underlying MDP model

by using bj(k) as a weighting vector, as described in [11].

Although this is not the optimal solution of the DEC-POMDP

problem, [11] shows that this approach leads to a near-optimal

solution with a very low computational complexity if the

algorithm adopts an ε-greedy policy [8].

Since the secondary users cannot fully observe the state of

the primary system in the POMDP environment, the sensing

policy of each secondary user is based on the belief vector

bj(k) =
[

bj(1, k), ..., bj(2
L, k)

]

. We describe the Q-learning

Algorithm 1 Q-learning Algorithm for agent j ∈ Ks

for each s ∈ S. a ∈ C do

Initialize Q(s, a) = 0.

end for

Initialize the belief vector b arbitrarily.

for each time slot k do

Generate a random number rnd between 0 and 1.

if rnd < ε then

Select action a∗ randomly.

else

Select action a∗ = arg maxa Qb(a).
end if

Execute action a∗ (i.e. sense channel a∗).

Receive the immediate reward rj(k).
Update p0(a

∗, k, j) using the observation y(k):

p0(a
∗, k, j) ← f0(y(k))p0(a

∗,k,j)
∑

1

l=0
fl(y(k))pl(a∗,k,j)

Update the current belief b according to p0(a
∗, k, j).

Evaluate the next belief vector b′ based on (2).

Update the table entries as follows:

Q(s, a∗) ← Q(s, a∗) + ∆Qb(s, a∗), ∀s ∈ S .

b ← b′.

end for

procedure for each user j ∈ Ks in Algorithm 1. Given a belief

vector b = [b(1), · · · , b(2L)], we define the Q-value of the

belief vector b as:

Qb(a) =
∑

s∈S

b(u(s))Q(s, a), (5)

and the update function as:

∆Qb(s, a) = ξb(u(s))

[

rj(k) + γ max
a′∈C

Qb′(a
′) − Q(s, a)

]

.

We define ξ to be the learning rate. The Q-value Q(s, a) is

updated after taking every action using:

Q(s, a) ← Q(s, a) + ∆Qb(s, a). (6)

This update is done for every state s ∈ S .

V. SIMULATION RESULTS

We assume that all primary channels i ∈ C have the same

transition probabilities that are governed by the transition

matrix:

Pi =

(

0.9 0.1
0.2 0.8

)

. (7)
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We define the average spectrum hole utilization as:

U =

∑Ks

j=1

∑∞
k=1 I{rj(k)=1}

∑L
i=1

∑∞
k=1 I{si(k)=0}

. (8)

The reinforcement values (rewards) are selected as follows:

1) rj(k) = 1 if secondary j successfully accesses channel

aj(k) at time k.

2) rj(k) = −0.5 if secondary j back-off due to collision

with another secondary user, and conditioned on the

channel being idle.

3) rj(k) = 0 if the sensed channel is busy.

In the random sensing scenario, the average number of

secondary users that are sensing a given primary channel is

E {Zi(k)} = Ks

L(1−(1−1/L)Ks)
, where Zi(k) ∈ {1, · · · ,Ks}

is a zero-truncated binomial random variable with parameters

Ks and 1/L. Thus, in the random sensing scenario, we

set the false alarm probability of each secondary user to

α = 1 − (1 − α0)
1/E{Zi(k)}

.

On the other hand, when applying the Q-learning algo-

rithm, the secondary users will be evenly distributed over

the channels. Therefore, E {Zi(k)} = Ks

L if Ks ≥ L, and

E {Zi(k)} = 1 otherwise.

We note that E {Zi(k)} is conditioned on the channel i
being sensed (i.e. conditioned on {Zi(k) 6= 0}).

In the following simulations, we model the sensing obser-

vations of channel i ∈ C as the output of a BSC with cross-

over probability νi, and we let ν = [ν1, · · · , νL]. The use of

a BSC permits to simplify the analysis, yet it is applicable

to different channel environments since νi can depend on the

channel fading model, the detector type, the signal and noise

power, and the prior distributions of the information message.

Interested readers are referred to [12]–[14] for the computation

of νi under different channel conditions and with different

detection methods.

We compare the performance of our proposed channel

access/sensing mechanism to the greedy approach that was

proposed in [2]. This greedy approach is equivalent to the

single-user approach that is defined in [3] and which is applied

as a non-cooperative myopic policy in multiuser OSA. In Fig.
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4, we observe that RL permits to achieve high utilization of the

spectrum opportunities in the primary channels. In particular,

in the low-noise regime, the spectrum utilization approaches

100%. Moreover, the RL algorithm has a significant advantage

over the greedy algorithm of [2] because the greedy algorithm

makes most of the secondary users to sense the channel that is

most likely to be idle, thus ignoring other possible spectrum

opportunities and causing collisions among secondary users,

as stated in [3]. This is expected because the greedy algorithm

is an optimal myopic strategy for a single-user case and can

only be a suboptimal strategy in a multiuser context. On

the other hand, a simple random sensing policy that selects

randomly a channel at each time instant can outperform the

greedy algorithm of [2] as the number of secondary users

Ks increases. That is because a random policy reduces the

collisions among the secondary users, compared to the greedy

policy of [2].

Next, we assume all primary channels to have the same

crossover probability νi and we show in Fig. 5 the impact of

the sensing noise on the performance of both the Q-learning

and random sensing systems. We see that the performance

drops at a higher rate when the crossover probability of

the sensing BSC (νi) becomes greater than the false alarm

probability α of each secondary user.



In Fig. 6, we analyze the collision probability that results

from our designed NP detectors. Here we are controlling the

collision probability with the primary channels during the time

slots in which a primary channel is being sensed. Figure 6

shows the accuracy of the proposed decentralized collision

probability control in maintaining the collision rate equal to

the prescribed threshold α0, by using either of the RL or

the random sensing protocols that are proposed in this paper.

From Fig. 6 it can be seen that these algorithms are robust

against channel impairments as captured by νi. The efficiency

of these algorithms is due to the fact that they estimate the

number of secondary users that are sensing each channel, and

based on this information, the channel access rule is updated so

that the collision rate with primary users is maintained within

the required bound. We observe also that the greedy policy

violates the prescribed collision probability with primary users

when the observation noise νi is low. However, in this case,

the excess in collision probability is not very large, compared

with α0, because most of the users sense the most likely idle

channel, whereas a small number of users would sense a busy

channel according to the greedy approach.

VI. CONCLUSION

In this paper, we derived channel sensing and accessing pro-

tocols for secondary users in decentralized cognitive networks.

The sensing policy is completely decentralized and is obtained

by using RL. The proposed policy ensures efficient utilization

of the spectrum resources since it exploits the Markovian

nature of the primary channel traffic and limits the collisions

among competing secondary users. Also, we have designed

a secondary detector that maximizes the detection probability

of the idle channels while satisfying the collision probability

constraint imposed by primary users. The designed policies

are characterized by their robustness and accuracy, and help

to enhance the cognitive capabilities of secondary users.
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