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Abstract—Dynamic Spectrum Leasing (DSL) was recently
proposed in [1]–[4] as a new way to achieve dynamic spectrum
sharing (DSS). Unlike previously considered dynamic spectrum
access (DSA) proposals, DSL allows for the spectrum owner,
called the primary user, to dynamically adjust the amount of
interference it is willing to tolerate from secondary users. In
response, the secondary users update their transmit powers to
maximize a suitably chosen reward function. In previous work, it
has been shown that the best response adaptations will converge
to a unique Nash equilibrium under the assumptions of a quasi-
static channel conditions and for a fixed number of secondary
users. In this paper, we investigate the convergence and equilib-
rium performance of the proposed DSL-game in the presence of
slow time-varying fading and time-varying secondary system size.
Our results show that while the DSL best response adaptation
algorithm is reasonably robust against these dynamics, there is
a trade-off between performance and the CSI update rate.

Index Terms—Cognitive radios, dynamic spectrum leasing,
DSL, game theory, Rayleigh fading, time-varying channels, time-
varying secondary system.

I. INTRODUCTION

Recent studies [5] have shown that the spectrum is under-
utilized in most of the licensed bands. Therefore, the engi-
neering, the economics, and the regulation communities have
started searching for better ways to fully utilize the already
allocated spectrum bands. One of the solutions that have
stimulated a great amount of research activities is the concept
of dynamic spectrum sharing (DSS). In [6], the authors provide
a game theoretical overview of dynamic spectrum sharing.
DSS can be categorized under three models [3]: a) dynamic
spectrum allocation, b) open sharing, and c) hierarchical shar-
ing. In a hierarchical sharing based system, there is a primary
system that owns licence rights to use a spectrum band and a
secondary system that is interested in accessing this spectrum.
The proposals under this category can be broadly divided along
two concepts: dynamic spectrum access (DSA) and dynamic
spectrum leasing (DSL). In DSA, the secondary system is
solely responsible for managing the interference level either
by spectrum underlay or by spectrum overlay [7]. A great deal
of research has been conducted in the DSA networks such as
analysis of network users’ behaviors, optimality, and fairness
among the secondary users. In [8], the authors model the
interactions between the primary users and the secondary users

as continuous-time Markov chains, by which they capture the
effects of the primary user’s activities on the secondary users.

In [2], the authors introduced the concept of DSL where
unlike in the DSA, the primary system can also be proactive
in managing the interference from the secondary system by
dynamically adjusting their interference cap (IC), defined as
the maximum instantaneous interference level it is willing
to tolerate from all secondary users. In [1]–[4], however,
the authors assumed a quasi-static environment in which the
channel coefficients are constant and the secondary system
size is fixed during a block length long enough for the game
best response iteration to converge to an equilibrium. In this
paper we study the behavior of a DSL system in a dynamic
environment, specifically when the channel coefficients change
with temporal correlations and the secondary system size
changes due to a user arrival process with an arrival rate λ.
In quasi-static conditions, the outcome of the round-robin best
response iterations of the DSL-game was found in [4] to be
the Nash equilibrium. In this paper we analyze the robustness
characteristics of the game in a time-varying environment
which forces the system to deviate from the actual Nash
equilibrium.

In Section II we introduce our signal and system model
for DSL in a time-varying environment. Next, Section III
describes the game theoretic formulation. In Section IV, we
present several simulation results to show the equilibrium
in the time-varying scenario and compare it to the quasi-
static environment. Finally, Section V concludes the paper by
summarizing the results.

II. DSL - BASED RADIO SYSTEM MODEL

We will assume that there is a primary wireless communi-
cation system that owns the licence of the spectrum band of
interest. The primary system has the rights to lease its spec-
trum to secondary users. We assume that there is one primary
transmitter-receiver link and Ki secondary transmitter-receiver
pairs (links) that are active during the i-th symbol interval.
The primary user will be labeled by 0 and the Ki secondary
links will be labeled 1 through Ki. The time-varying channel
coefficients between the k-th transmitter and the j-th receiver
is denoted by hjk(i) for j, k = 0, 1, · · · ,Ki. The primary user
will change its IC, denoted by Q0, which is the maximum



interference that the primary user is willing to tolerate from
the secondary users at a given time. Therefore the secondary
users choose their transmit powers, denoted by pk, in such a
way that the total interference of the secondary users on the
primary, I0, is less than Q0.

A. Signal Model

In this paper, we will assume that the primary and the
secondary users are transmitting at a symbol rate 1/T where
T is the symbol period. Let A

(i)
j,k = hj,k(i)

√
pk for j, k =

0, 1, · · · ,Ki and σ2
j is the variance of j-th receiver noise. As

in [2], we may obtain a discrete-time representation of the
received signal at the primary receiver during the i-th symbol
interval as:
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In the following we assume that the modulation is bi-

nary phase shift keying (BPSK), and the detectors are based
on the matched filter (MF) receivers. Therefore the pri-
mary decisions are given by b̂0,i = sgn
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In the following we define the k-th link to be between the

k-th secondary receiver and the k-th secondary transmitter.
Without loss of generality, we assume that the k-th receiver
is only interested in detecting the k-th secondary signal, for
k = 1, · · · ,Ki (i.e. k-th link). The decisions on the k-th link
is thus given by b̂k,i = sgn (yk,i) for k = 1, · · · ,Ki where
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the total interference from all secondary users to the k-th user
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B. Channel Model
In the following we will assume Rayleigh fading channel

coefficients with temporal correlations:

h(.,.)(i) = CN (0, σ2
h(.,.)

), (3)

where temporal correlation is modeled as a first order Guass-
Markov process [9], described via

h(.,.)(i) =
√
1− ϵ2h(.,.)(i− 1) + ϵw(.,.)(i), (4)

where the driving noise w(.,.)(i) are iid CN (0, σ2
h(.,.)

) and
ϵ is the channel variation rate. We assume that the channel
state information (CSI) is not instantaneously available to the
receivers, and each receiver updates the CSI periodically every
L samples. The detectors decisions will thus be based on the
estimated CSI defined as:

ĥ(.,.)(i) = h(.,.) (⌊i/L⌋L) . (5)

C. Secondary System Size Model
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Fig. 1. Time-varying secondary system model.

In this paper, we consider the case in which the secondary
system size is time-varying. To that end, we assume that the
secondary user arrival process is Poisson with a parameter λ
(i.e. the secondary users’ average arrival rate per symbol period
T ) and the service time Tk has an exponential distribution with
mean 1/µ where µ is the service rate per symbol period T .
The total number of packets for the k-th secondary user Np,k

is equal to the number of symbols that can be transmitted
during the service time (Tk/T ) divided by the total number of
symbols per packet Lp (i.e. Np,k = ⌈Tk/TLp⌉). We assume
that Ln number of these symbols are used for best response
adaptation.

As shown in Fig. 1, the users that arrive during the best
response iterations (i.e. users 1 and 18) can directly join the
system. Thus, for 1 ≤ i ≤ LN , we may model the system as
M/M/∞ queueing system which is stable for A ≥ 0 where
A = λ/µ is the offered traffic [10]. After the best response
iteration, we assume that the users start transmitting payload
symbols of the packet. Any new arrivals during this period is
assumed to be buffered which is the case for users 5 and 9 in
Fig. 1. All the buffered users join the system at the end of the
current packet.
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Fig. 2. Effect of the secondary system size on the time-varying (ϵ = 0.1) case compared with quasi-static case (ϵ = 0) for L = 10.

III. NONCOOPERATIVE DSL-GAME MODEL

A. Game Model

The DSL framework allows for the primary user to interact
with the secondary users to adjust the total interference level.
The primary changes Q0 while the secondary users adjust there
transmit powers in order to maximize their utility functions.
As in [2], it can be formulated as a noncooperative game
(K,Ak, uk(.)):

• Players: K = {0, 1, 2, · · · ,Ki}, where we assume that
the 0-th user is the primary user and k = 1, 2, · · · ,Ki

represents the k-th secondary link.
• Action space: P = A0 × A1 × A2 · · · × AKi , where

A0 = Q = [0, Q̄0] represents the primary user’s action
set and Ak = Pk = [0, P̄k], for k = 1, 2, · · · ,Ki,
represents the k-th secondary user’s action set. The action
sets are upper bounded by Q̄0 and by P̄k which represent
the maximum possible IC of the primary user and the
maximum transmission power of the k-th secondary user,
respectively. The action vector of all players is denoted by
a = [Q0, p1, · · · , pKi ]

T , where Q0 ∈ Q and pk ∈ Pk. We
will use the notation a−k whenever we refer to the action
vector excluding the k-th user, for k = 0, 1, 2, · · · ,Ki.

• Utility function: We denote by u0 (Q0,a−0) the primary
user’s utility function and by uk (pk,a−k), for k =
1, 2, · · · ,Ki, the k-th secondary user’s utility function.

As defined in [2], [4], the primary user’s target SINR at
any given time t is defined in terms of its assumed worst-case
secondary interference:
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The SINR γ̄0 is called the worst-case interference since
Q0 is the maximum possible interference that the secondary
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From [4], the primary and secondary utility functions are,
respectively,
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0 is a scaling parameter that can be taken as proportional to the
bandwidth. Note, that according to utility function (8), the k-th
secondary user reward is the rate fk(pk) = Wk log(1 + γ

(i)
k ).

B. Nash Equilibrium
In [4], the authors investigated the equilibrium strategies on

the proposed game G = (K,Ak, uk). Each user attempts to
maximize its utility function (defined in (7) and (8)). A set of
necessary conditions on F (Q0) for u0 to be quasi-concave
and thus the game G to have a unique Nash Equilibrium
was given in [3]. In the remainder of this paper, we consider
the following primary reward function which satisfies those
conditions F (Q0) = log(1 +Q0).

C. Best Response Adaptations
From [4], the best response strategy for the primary user is
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Fig. 3. Effect of the steepness coefficient δ, channel variation rate ϵ and the channel estimation period L.

The best strategy for the k-th secondary user is a function
Q0, I

(i)
0,−k and I

(i)
k . The secondary system can measure the

total interference at its receiver I(i)k . We will assume that the
primary system periodically broadcasts the values of Q0 and
I
(i)
0 . These are the only quantities needed to be exchanged

between the primary and the secondary systems. Using an
estimated value of the state information ĥ0,k, and knowing
its own transmit power, the k-th secondary user can estimate

the residual interference Î
(i)
0,−k = I

(i)
0 −

(
ρ
(p)
0,k

)2
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IV. NUMERICAL ANALYSIS AND SIMULATIONS

In this section we investigate the equilibrium behavior of
the above DSL-game in the presence of time-varying fading
and Poisson distributed user arrivals. First, we compare a
quasi-static (ϵ=0) system to that with time-varying channel
coefficients assuming a fixed secondary system size Ki = K.
Next, we allow the secondary system size to be time-varying
as described in Section II-C.

For each set of parameters the results are averaged over
2000 channel fading coefficients and secondary system size
using Monte Carlo methods. Unless specified otherwise, in
what follows simulation parameters were set to σ2

j = σ2
hj,k

=
1, ρj,k = 1, L = 10, δ = 10 and Wk = 1. The maximum
IC allowed for the primary user is Q̄0 = 10 and the worst
case primary SINR is fixed to γ̄0 = 1. The maximum transmit
power for the k-th secondary user is set to P̄k = 12.

A. Effect of the Secondary System Size and the Steepness
Coefficient

Figure 2(a) shows the outcome of the game versus the fixed
secondary system size K. As in the quasi-static case, in the
time-varying scenario the safety margin Q0 − I0 decreases
when the number of the secondary users increases. However,
in the time-varying system the values of Q0 and I0 are slightly
higher than those for the quasi-static system. The reason for
this increase is due to the incomplete information caused
by the outdated CSI. This incomplete information forces the
system to deviate from the actual Nash equilibrium. Figure

2(a) shows that the time-varying scenario can accommodate
up to 22 secondary users without violating the primary IC
whereas in the quasi-static scenario the system can handle up
to 24 secondary users.

Figures 2(b) and 2(c) show the primary utility function
and the secondary reward function, respectively, at the Nash
equilibrium of the DSL system. In Fig. 2(b) we observe a
slight increase in the utility function in the time-varying case
compared to the quasi-static case. This gain is due to the
increased total interference level at the primary receiver as
shown in Fig. 2(a). The effect of the steepness coefficient δ in
the secondary user utility function is shown in Fig. 2(b) and
3(a). Increasing δ will increase the steepness of the decay
of secondary user utility function when I0 > Q0. Figure
3(a) shows the game outcome in a time-varying environment
(ϵ = 0.1) for δ = 5, 10 and, 20. As one would expect, the
values of Q0 and I0 saturate when δ is large enough. Thus,
in what follows the parameter δ is set to be δ = 10.

B. Effects of CSI Update Period and Channel Variation Rate

Figure 3(b) shows the evolution of the DSL game outcomes
(Q0 and I0) during the best response adaptations for different
values of L. We have fixed the channel variation rate to
ϵ = 0.1 and the number of secondary users to K = 10. The
convergence deteriorates for large L values as can be observed
by comparing L = 10 with L = 40 in Fig. 3(b).

Figure 3(c) shows Q0 and I0 at the system Nash equilibrium
as a function of the channel variation rate ϵ. It can be seen in
Fig. 3(c) that both the equilibrium IC and the total secondary
interference increase when channel variation rate ϵ increases.
For a fixed number of secondary users (K = 10) the system
can tolerate up to 13% channel variation rate when δ = 5.
However, for large δ, the system will saturate at ϵ = 0.18.

C. Effect of the Time-Varying Secondary System Size

In this section, we investigate the effect of the time-varying
secondary system size Ki. The packet size is assumed to
be Lp = 100 symbols and the best response iterations are
assumed to be terminated after LN = 30 symbols. Figure
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Fig. 4. The game outcome for a time-varying secondary system scenario with L = 10.

4(a) shows the outcome of the game at Nash equilibrium for
different arrival rates λ. The arrival rate λ has the same effect
as the fixed secondary system size. When we increase the
arrival rate, the mean number of secondary users in the system
increases. Therefore the outcomes Q0 and I0 of the game
increase. For large values of λ, Q0 limit is violated due to
the high number of secondary users available on average in
the system. For a service rate µ = 0.004, the maximum value
of arrival rate λ that the system can accommodate is 0.08.
However if the service rate µ is increased, the performance
will improve because on average there will be fewer users in
the system. Thus for µ = 0.02, the system can tolerate an
arrival rate up to λ = 0.19. However, Fig. 4(b) shows that for
large values of µ (e.g., µ ≥ 0.01 when λ = 0.15) the values
of Q0 and I0 are almost saturated. This is because, when µ
is large, the service time decreases and the number of packets
transmitted by the k-th user, Np,k, saturates to its minimum
value 1.

In Fig. 4(c), we show the outcome of the game at Nash
equilibrium as a function of the channel variation rate ϵ. As
expected, for smaller secondary arrival rates λ, the system can
tolerate higher channel variation rates ϵ. When we decrease λ
from 0.15 to 0.1, the system can tolerate a channel variation
rate of ϵ = 0.14.

V. CONCLUSION

In this paper, we investigated the best response convergence
and the equilibrium performance of a DSL based spectrum
sharing network in the presence of dynamic channel con-
ditions. We showed that the Nash equilibrium is a good
approximation for the system equilibrium under the time-
varying environment similar to when fading is quasi-static.
Under the time-varying conditions and for a reasonable values
of the channel variation rate ϵ and the CSI update period
L, the equilibrium point is slightly perturbed compared to
that under quasi-static conditions due to the outdated channel
information. The performance is slightly degraded due to this
shift of the system operating point; the maximum number of

supported secondary users is decreased. As the channel varia-
tion rate ϵ increases, the convergence to the Nash equilibrium
deteriorates. To compensate this loss, one can reduces the CSI
update period L.
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