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Abstract-The estimation of the spectrum usage from the point
of view of number of users and modulation types is addressed in
this paper. The techniques used here are based on Support Vector
Machines (SVM). SVMs are machine learning strategies which
use a robust cost function alternative to the widely used Least
Squares function and that apply a regularization which provides
control of the complexity of the resulting estimators. As a result,
estimators are robust against interferences and nongaussian noise
and present excellent generalization properties where the number
of data available for the estimation is small. The structure
presented here has a feature extraction part that, instead of
using an FFT approach, uses the SVM criterion for spectrum
estimation, feature extraction and modulation classification .

I. INTROD UCTION

Cognitive Radio (CR) is an emerging technology that
promises to dramatically increase the utilization of the avail­
able radio resources, as well as to dramatically change the
way in which a user interfaces with a communication device.
Following [I] the key features of a CR are 'the awareness
of the radio environment in terms of spectrum usage, power
spectral density of transmitted/received signals, wireless pro­
tocol) and intelligence." A CR can be thought as a software
defined radio (SDR) with possibly reconfigurable antennas
that provide flexibility and reconfigurability plus a machine
learning device (MLD) that provides the needed intelligence
to adapt the SDR to the given environment through a set of
trade-offs between some optimallity criteria and some user,
system or environment constraints (Figure I) [2]. In particular,
the MLD is intended to learn how the users interact with the
radio, and how best to use the available radio resources.

A lot of the MLD research has focused on Genetic Algo­
rithms or Neural Networks for both of these tasks [3], [4]. An
interesting approach to characterize the users is to determine
the types of modulations used. Hu and coworkers [5] proposed
a strategy to classify among different modulations by using a
feature extraction method based on spectral correlation analy­
sis [6], [7]. The extracted features were fed into a multiclass
Support Vector Machine (SVM) [8], [9] classifier. Hu's method
showed excellent results in gaussian noise environment. Au­
thors compared among different classification algorithms to
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state that the SVM approach is the best one when the number
of data available for the estimation is small. Hu's method is
ultimately based on the use of the Fast Fourier Transform for
spectrum estimation and feature extraction.

Spectrum estimation has to be performed using small,
broadband and nondirective antennas with the assumption of
heavy noise and interference in the RF channel. When the
interferences are not Gaussian, methods that rely on a Least
Squares (LS) optimization criterion may not produce accurate
spectrum estimation. Among those methods, the most widely
used is the Discrete Fourier Transform (DFT). The Mini­
mum Variance Distortionless Response method (MVDR) and
MUltiple Signal Classification (MUSIC) are also widespread
methods that implicitly use the LS criterion, thus lacking
accuracy in non Gaussian scenarios.

In [10] a method for spectrum sensing has benn presented
based on the SVM method ontroduced in [II]. This method
implicitly uses a cost function which is linear, thus being
part of so-called robust regression methods. Moreover, SVM
has been proven to use a cost function which has the same
properties as the Huber Robust Cost function [12]. While these
methods are suboptimal under Gaussian noise, they are very
robust under non Gaussian noise conditions.

Here we present a methodology that combines both strate-
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with

where Q is a vector containing all Lagrange multipliers, and X
contains all training input vectors in column form. Functional
(4) is usually solved through quadratic programming.

In spectrum estimation, we assume a linear model [11]

w=(~)
x[n] == (1, ... cos (2~1r n) , ... ,1,... sin (2~1r n) ...)T

(6)

(7)

(9)

This spectrum is similar to the DFT spectrum, but here we
do not assume that the noise is white. Instead, we use a cost
function that is zero between ±c, and that it is linear beyond
±c ± ,C. This gives more robustness against non Gaussian
interferences. Also, the regularization parameter improves the
generalization with respect to the one of the quadratic criterion
implicit in DFT.

Note that instead of using sinusoids as approximating func­
tions, one may use ad-hoc signals as modulated pulses to better
approach the spectrum where a priori knowledge about the
signal under detection is available [13].

III. FEATURE EXTRACTION BASED ON SPECTRAL
CORRELATION

Ciclostationarity properties of modulated signals were first
derived by Gardner in the middle 80's [6], [7], and they
are commonly used to extract time and frequency domain
features that are used to classify the signals among a given
set possible modulations. Time domain analysis comprises the
cyclic autocorrelation function. For a deterministic time series
x (t), we define the cyclic autocorrelation function as

In order to compute the spectrum, we simply solve functional
(4) and then compute terms a and busing (6). Straightfor­
wardly, the spectrum estimation at frequency W k == 2~1r is

CO!(J) - S~(J) (11)
y - /(83(f + a/2)83(f - a/2))

Four characteristics are used in [5] and other works to
classify modulations using machine learning algorithms. The

where 8;:T(t, f) is the Fourier transform of the expression
after the limit in equation (8), this is,

S';T = ~Y(t,f +~). Y*(t,j -~) (10)

where Y(t, f) is the Fourier transfor of the signal y(t) in the
interval t ± T /2. In our approach, we substitute the Fourier
transform by the SVM-DFT transform of the previous section.

The spectral correlation function can easily be particularized
to a finite interval in order to make it usable in practice.
In [5], authors also use the so called spectral autocorrelation
coefficient between frequency components placed at a distance
±a/2, which is expressed as

A 1 jT/2 .
R~(T) == lim - y(u+T/2)y*(u-T/2)e-221raudu

T----tOQ T -T/2
(8)

The series is said to be wide-sense cyclostationary with period
To if R~ is not identically zero for a == nTo for some integers
n, but is identically zero for all other values of a.

The Fourier transform of this signal is the so-called spectral
correlation function, and it can be expreseed as

(1)

(2)

(4)

(5)

w == X (a - a')
K == XTX

1 N
L = "2llwl12 +CL£(~i +W

i=l

subject to
w T x[i] - y[i] == ei + E

-wT x[i] + y[i] == e~ + E

ei, e~ ~ 0

where R(.) is a convex cost function, C is the trade off
parameter and ei, e~ are the slack variables or losses. The
constraints mean that, provided the slack variables must be
positive or zero, if the error is between ±c, then this error
is not taken into account. Otherwise, for positive or negative
errors, we minimize the contribution of the slack variables.

Applying Lagrange multipliers ai, a~ to each constraint
of (2) on functional (1) leads to the following equivalent
functional

y[n] = t ak cos (2~7fn) + bk sin (2~7fn)
k=l

so identifying terms

gies and that produces an estimator that holds the features
of the SVM in both the feature extraction part and the
classification part.

In the next section the techniques used in [11] and in [10]
for spectrum estimation are described, and in section III the
feature extraction used for signal classification in conbination
with the spectrum SVM estimation is presented. Section IV
presents the results of this combination in some modulation
classification experiments.

II. SPECTRUM ESTIMATION BASED ON SUPPORT VECTOR
MACHINES

Support Vector Machines (SVM) are a class of learning
machines whose criterion for optimization consists of a trade­
off between the minimization of the training error and the min­
imization of the quadratic norm of the parameter vector. This
last term is a regularization that controls the generalization
ability of the machine, thus improving the performance with
respect to non-regularized methods. For a regression model
of the form y[i] == w T x[i], the functional that includes both
terms is
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first one consists of the count ofnarrow pulses in the frequency
domain present in the spectral autocorrelation function. To
find this feature, it is enough to set a == 0 and count the
number of peaks in the resulting function. The second feature
to extract is the number of spectral lines in the a domain of
the spectral autocorrelation function. The third feature is the
average energy of these pulses. The fourth feature of the set
is the maximum value of the spectral correlation coefficient.

IV. RESULTS

Several experiments have been run in order to compare
the results of the signal classification using the SVM-FFT
approach, and we compared them with those of a standard FFT
spectrum in a strong non Gaussian interference environment.

A. Experiment setup

The structure of our algorithm consists of three stages:

• An SVM-DFT estimator. This stage takes the signal
and, using the formulation of section II, computes an
estimation of the spectrum of the signal. Note that this
SVM does not need a training and test parts. Instead,
the desired result is the set of coefficients o.; and b, in
eq. (6). To do that, we optimize eq. (3) and compute
the coefficients using eq. (4). This spectrum is used to
compute the spectral correlation function and the spectral
correlation coefficients.

• A feature extractor, which extracts the four features de­
scribed in section III from the spectral analysis performed
by the previous stage.

• A standard SVM classifier used to classify among the
various modulations. The binary version of the SVM
is completely described in [9]. Nevertheless, we need,
in general, a multiclass classifier in order to be able
to include more than two class of modlulations. There
are several approaches that can be constructed using a
binary base classifier, as the one-against-all, the one­
against-one, output correcting codes [14] or the directed
acyclic graphs [15], among others. We use the direct
multiclass SVM [16], which is implemented with the
software LIB-SVM [17]. The kernel function chosen
for the SVM is the Gaussian radial basis function, as
they have largely demonstrated excellent approximation
properties in a variety of classification and regression
applications.

In this research we are using MATLAB/SIMULINK to
generate a representation of several modulations. We simulate
an ISM-like environment with signals that travel along a
deep fading Raileigh channel, simulating the common mul­
tipath environment of indoor signals. Signals are sampled at
Nyquist frequency in order to obtain their complex envelope
equivalents. The signal has been corrupted with AWGN and
with impulse noise. Impulse noise is generated by a train
of impulses distributed in time with a Bernouilly probability
density, and with probability of occurrence of 10%, whose
amplitude had a Gaussian statistics. The data used to train
the classifier was corrupted only with Gaussian noise of

No of symbols 1 2
SVM -0.6 ± 2.00 -0.05 ± 0.10
FFT 8.22 ± 16.34 2.00 ± 11.22

No of symbols 3 4
SVM -0.01 ± 0.22 -0.00 ± 0.00
FFT 4.09 ± 10.09 1.91 ± 3.32

TABLE I
FREQUENCY ESTIMATION OF SPECTRAL PEAKS USING S VM-FFT AND

STANDARD FFT.

variance 0.1, and consisted of several thousands of patterns.
The training of the structure was performed online, and a cross
validation of parameters C and a of the SVM was run using
the common v-fold technique.

The test signal was corrupted by Gaussian noise with
impulse noise added in blocks of random duration and length.
These blocks of noise have a probability of occurrence of 1%,
and they simulate an interference. The Gaussian noise power
was 0 dB and the block noise power is variable.

There are four classes of signal modulations: BPSK, QPSK,
FSK and MSK, but more modulations can be considered, as
general QAM signals.

B. Robustness against interferences

Usually, a classifier that has been trained with a set of
signals corrupted with a fixed signal to noise ratio, will present
poorer performance with test signals of different SNR, when
compared with a classifier trained and tested with the same
SNR. This is due to the fact that the optimal classification
boundary changes with the SNR, because the statistics of the
features also change. This problem can be partly alleviated
if the feature extractor is robust against the interference, this
is, if for a given range of noise power, the features do not
significantly change. This is one of the features of the SVM­
FFT. In order to compare the robustness of the classifiers
against interferences, the test signal has been corrupted with
different values of impulse noise power, and the classifier
tested with them.

In order to show the performance of the SVM-FFT against
the standard FFT, we performa a peak detection test over
BPSK signals in impulse noise for different number of sym­
bols. Table I shows the mean and variance of the resulting
estimations. As it can be seen, the SVM-FFT is able to detect
the spectral peaks with small error where, in some cases, the
FFT detection error is not acceptable. This result is consistent
with the one presented in [10].

Table II shows the performance in the classification of
the signals with no impulse noise, and Gaussian noise with
S N R == 3dB. Table III shows the classification accuracy
with 7 dB impulse noise power. Where both approaches have
similar performance in conditions of Gaussian additive noise,
it can be seen that the classification error of the feature
extractor based on the FFT significantly degrades in presence
of impulse noise, not considered during the training, while the
SVM-DFT has a reasonable good performance.
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FFT BPSK QPSK FSK MSK
BPSK 99.3 a 0.4 0.5
QPSK a 100 a a
FSK 0.7 a 99.6 a
MSK a a a 99.5

SVM-FFT BPSK QPSK FSK MSK
BPSK 99.5 a a a
QPSK a 100 0.3 a
FSK 0.5 a 99.7 a
MSK a a a 100

TABLE II
CLASSIFICATION ACCURACY FORTHE SVM WITH FFT-BASEDFEATURE
EXTRACTOR AND FORTHE SVM WITH SVM-DFT-BASED EXTRACTOR.

No IMPULSE NOISE ADDED.

FFT BPSK QPSK FSK MSK
BPSK 59.3 15.7 33.4 21.5
QPSK 20.4 50.7 12.2 12.7
FSK 13.5 11.9 49.9 16.3
MSK 6.5 21.7 4.5 49.5

SVM-FFT BPSK QPSK FSK MSK
BPSK 96 1 1.1 1.3
QPSK a 99 0.3 2.1
FSK 3.5 a 89.2 0.6
MSK 0.5 a 9.4 96

TABLE III
CLASSIFICATION ERROR FORTHE SVM WITH FFT-BASEDFEATURE

EXTRACTOR AND FORTHE SVM WITH SVM-DFT-BASED EXTRACTOR.
IMPULSE NOISE ADDED.

V. CONCLUSION

Spectrum sensing is a key tool for CR. This task can
challenging due to noise and interferences in many possible
scenarios. We particularly point out the situation where small
low gain antennas are used in presence of heavy non Gaussian
interferences. We introduced here a method based on Support
Vector Machines that are robust against heavy interferences,
in scenarios in which DFT is unable to estimate the spectrum
due to the fact that the statistics of the noise is non Gaussian.

We briefly presented the standard SVM technique, and its
application to spectrum estimation. For this purpose we used
an algorithm that has the same structure as the DFT, but
removing the LS criterion of optimality. Instead, we use the
SVM criterion, which involves a robust cost function and a
regularization term that limits the complexity of the resulting
estimator. We propose here its use to detect modulations in
noise, using this technique as a feature straction step in a
standard spectral correlation estimation presented in [5].

In the simulations we show that when the signal is corrupted
by heavy interference, SVM produces a good estimate while
the FFT does not. The simulations show that the SVM has
a better repeatability and accuracy, and the differences in
performance increase with the interference power.

Finally, it is important to remark that, as FFT is optimal in
a Gaussian noise environment, it shows the same performance
as the SVM technique in these conditions. In other words,
SVM has no advantage over the DFT under Gaussian noise,
as LS is the optimal criterion in this scenario.
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