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Abstract—Signal to Interference plus Noise Ratio (SINR) is
a key parameter for every user in a wireless network. Different
users with heterogeneous QoS requirements have different target
SINR requirements. In cognitive radio (CR) networks, secondary
users try to access the available spectrum in order to make
successful transmissions. However, without proper regulation,
they may transmit at their maximum power to achieve the highest
possible SINR, which can be even worse than the current wasteful
static spectrum utilization. A target SINR game (TSG) is a
powerful tool to regulate each secondary user’s behavior, provide
them with decent SINRs (i.e. close to their target SINRs) and
simultaneously limit the interference they cause to primary users
and other secondary users. The goal of this paper is to analyze
the performance of the Matched Filter (MF) receiver and the
linear MMSE receiver (LMMSE) in a TSG. As expected, the
LMMSE shows several advantages in performance over the MF.

Index Terms—Cognitive radios, target SINR game, game
theory, Nash equilibrium, LMMSE receiver.

I. INTRODUCTION

Game theory is a collection of tools for analyzing the
interaction among rational decision makers. In a wireless
network, different users are the players who compete for the
valuable resource: spectrum. Many researchers have used the
game theoretical methods to analyze the resource allocation
in wireless networks. In [1], the authors proposed an energy
efficient utility function that was shown to have a unique Nash
Equilibrium (NE) due to its quasi-concavity property. In [2],
by realizing the NE in the game in [1] may not be optimum, the
authors further introduced the concept of Pareto efficiency into
the game. They imposed a linear pricing function to gain better
overall performance. [3] generalized this energy efficiency
game by using Linear Minimum Mean Squared Error receiver
(LMMSE) and showed that the game also converges to a
unique NE due to the quasi-concavity property of the utility
function. In [4], the authors generalized this game further
by considering the QoS constraints. A summary on game
theoretical approaches used in the energy efficient resource
allocation in wireless networks can be found in [5].

One of the key objectives of cognitive radio (CR) net-
works is to allow unlicensed secondary users to share the
available spectrum that is assigned to the primary users.
This can greatly increase the spectrum efficiency. However,
if all secondary users pour large amounts of power into the

available spectrum, the primary users’ QoS can be greatly
undermined. Hence, power control is of paramount importance
in a cognitive network. An adherence to hierarchies between
primary and secondary users in a peer-to-peer CR network
through distributed power control was introduced in [6]. A
more efficient branch and bound algorithm was proposed in
[7] for optimal power control in cognitive radio network and
an adaptive transmission scheme based on the Interference
Temperature was analyzed in [8]. As another solution, [9]
introduced the TSG model which can provide each secondary
user with an acceptable Signal to Interference plus Noise Ratio
(SINR) while limiting the secondary users’ transmission power
simultaneously. In this paper, their results on the matched filter
receiver are re-derived in a new method and also the TSG
is generalized to linear-minimum-mean-squared error receiver
(LMMSE).

The remainder of this paper is organized as follows: Section
II introduces the system and the TSG game models. Sections
III and IV show that TSG with both the MF receiver and
the LMMSE receiver have unique Nash Equilibria that can
be reached by the best response algorithm. In section V, the
numerical results are used to show that the TSG with the
LMMSE receiver has advantages that are important in practice
over that of the MF receiver. Section VI concludes this paper.

II. SYSTEM AND TSG GAME MODELS

A. System Model

Suppose that we have a single cell DS-CDMA wireless
system with uniformly distributed K secondary cognitive
radios and a single receiver [9]. All cognitive radios compute
their instant SINRs from the broadcast information of the
common receiver. Based on these SINRs, the cognitive radios
adapt their transmit power in order to bring their SINRs
closer to their target SINRs. The secondary radios’ SINRs are
determined by their heterogeneous QoS requirements

The received signal at the common receiver can be written
as:

r(t) =
K∑

k=1

B−1∑
i=0

Akbksk(t − iT ) + σn(t)

where n(t) ∼ N (0, 1) is the standard additive white Gaussian
noise, Ak is the k-th user received signal amplitude, bk(i) is
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the i-th symbol of the k-th user and sk(t) is the k-th user’s
spreading waveform with

∫ ∞
−∞ s2

k(t)dt = 1 and sk(t) �= 0
only if t ∈ [0, T ], where T is the symbol duration.

The conventional detector for the k-th user is:

b̂k(i) = sgn(yk(i)) for i = 0, 1, ..., B − 1,

where

yk(i) =
∫ ∞

−∞
r(t)sk(t − iT )dt,

= Akbk(i) +
K∑

j=1,j �=k

Ajbj(i)ρj,k + nk(i)

with

ρj,k =
∫ ∞

−∞
sj(t)sk(t)dt = sT

j sk, (1)

and

nk(t) =
∫ ∞

−∞
σn(t)sk(t − iT )dt ∼ N(0, σ2).

Note that in (1), sk denotes the spreading code of user k. Thus,
the k-th user’s SINR is

γk =
A2

k∑K
j=1,j �=k A2

jρ
2
j,k + σ2

.

B. Game Model

In this system, if all users want to achieve an SINR
as high as possible, they may transmit at their maximum
power introducing significant interference to the system. Thus,
according to different QoS requirements of users, different
target SINRs should be assigned to users. Every user should
try to achieve its target SINR while limiting its transmit power
in order to reduce the interference it causes to others. Here, we
use a game theoretical approach to analyze power allocation
in this system. We introduce following definitions:

1) Player set K: Secondary cognitive radios k ∈ K.
2) Action space Ā: Ā = Ā1 × Ā2 × ...× ĀK , where Āk =

[0, AMAX ] is the k-th radio’s received signal amplitude

set and AMAX is the maximum received signal power.
We let Ak =

√
pk × gk, Ak ∈ Āk, where pk is the k-th

user’s transmit power and gk is its channel gain. While in
practice the users adapt their transmit power to achieve
the target SINR, for theoretical analysis, we assume that
the channel is static in this game, i.e. gk is constant,
for ∀k ∈ K. Then, pk = A2

k

gk
, where the adaptation of

the received signal amplitude Ak can reveal that of the
transmit power.

3) Utility function uk,∀k ∈ K:

uk(A) = − (γT (k) − γi(k))2 (2)

Here, γT (k) and γi(k) are the target and instantaneous
SINRs of user k. A = (A1, A2, ..., AK) is the received
signal amplitude vector, which is referred as the network
state.

In this game model, all secondary radios adapt their transmit
powers to satisfy their target SINRs that represent their QoS
requirements. Note that, game (2) limits the interference a
radio causes to the system and simultaneously protects the
radio’s benefit. At an NE of this game, if one exists, no
secondary radio will have an incentive to change its transmit
power.

III. THE ANALYSIS OF TSG WITH THE MATCHED FILTER

RECEIVER

If we are to use a matched filter as the common receiver,
the utility function of the k-th radio becomes

uk(A) = −(γT (k) − γMF
i (k))2

= −(γT (k) − A2
kI−1

k )2

= −(I−1
k )2A4

k + 2γT (k)I−1
k A2

k − γ2
T (k),

(3)

where Ik =
∑K

j=1,j �=k A2
jρ

2
j,k +σ2 is the interference the k-th

user suffers from other secondary users.

A. Existence of a Nash Equilibrium

From Theorem 11 in [2], a Nash equilibrium exists in game
G = (K, Ā, uk(.)), if for all k = 1, 2, ...,K:

1) The k-th user’s action set, Āk, is a nonempty convex,
and compact subset of some Euclidean space R

N

2) uk(A) is continuous in A and quasi-concave in Ak.

Obviously, since the k-th user’s action set Āk is a closed and
bounded interval, it satisfies the first condition. Furthermore,
uk(A) in (3) is continuous in A and concave in Ak. Thus,
at least one Nash equilibrium exists in the TSG with the MF
receiver.

B. Uniqueness of the Nash Equilibrium

Definition 1 A best response correspondence, ∀k ∈ K,
rk : Ā−k → Āk, is

rk(A−k) =
{Ak ∈ Āk : uk(Ak,A−k) ≥ uk(A′

k,A−k) ∀A′
k ∈ Āk}

(4)
Definition 2 Round robin best response decision rule.
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In every adaptation round, every player updates its action
sequentially. In particular, the k-th player ∀k ∈ K, updates its
action to its best response action.

To establish the uniqueness of the NE in TSG for the MF
receiver, we first show that the best response correspondence
r(A), i.e. r(A) = (r1(A), r2(A), ..., rK(A)) is a standard
function. From [10], r(A) is a standard function if

1) positivity: r(A) > 0
2) monotonicity: if A ≥ A′, then r(A) ≥ r(A′)
3) scalability: for all μ > 1, μr(A) > r(μA).

All the above inequalities are component-wise, i.e. r(A) ≥
r(A′) ⇔ rk(A) ≥ rk(A′) ∀k ∈ K.

The best response correspondence for game (3) can be
solved by setting

∂uk(A)
∂Ak

= 4AkI−1
k (γT (k) − γMF

i (k)) = 0, (5)

so that, the best response correspondence of the k-th user is

A∗
k = rk(A) =

√
γT (k)
I−1
k

∀k ∈ K. (6)

In the following, we show that the best response correspon-
dence (6) satisfies the above three conditions.

1) positivity: From (6), since γT (k) > 0, the best response
correspondence satisfies the positivity condition above.

2) monotonicity: Given A ≥ A′, i.e. Ak ≥ A′
k, ∀k =

1, 2, ...,K. Since Ik =
∑K

j=1,j �=k A2
jρ

2
j,k +σ2, and I ′k =∑K

j=1,j �=k A′2
j ρ2

j,k + σ2, then we have that I−1
k ≤ I ′−1

k .
Hence,

rk(A) =

√
γT (k)
I−1
k

≥
√

γT (k)
I ′−1
k

= rk(A′)

3) scalability: For ∀μ > 1 and ∀k ∈ K

μrk(A) = μ

√√√√ γT (k)(∑K
j=1,j �=k A2

jρ
2
j,k + σ2

)−1

=

√√√√ γT (k)(∑K
j=1,j �=k μ2A2

jρ
2
j,k + μ2σ2

)−1

>

√√√√ γT (k)(∑K
j=1,j �=k μA2

jρ
2
j,k + σ2

)−1

= rk(μA)

Thus, μr(A) > r(μA).
Thus, the best response correspondence of TSG with the

MF receiver is a standard function. It has been shown that the
fixed point A = r(A), i.e. a Nash Equilibrium, is unique when
r(A) is a standard function [10]. Thus, the Nash equilibrium
in this game is unique.

When the game converges, the action vector arrives at a
steady state, meaning that given other players’ actions are
fixed, the k-th user doesn’t have any incentive to change its
action, i.e a Nash Equilibrium of this game. We can conclude
that under the best response algorithm, all the steady states
are NEs. In conclusion, the TSG with the MF receiver has a
unique NE and converges to this NE under round robin best
response decision rule.

IV. THE ANALYSIS OF THE TSG WITH THE LINER MMSE
RECEIVER

It is well known that linear MMSE receiver maximizes the
output SINR. Thus, with the same target SINR constraints,
the linear MMSE receiver may require the secondary radios
to transmit at a lower power than that with the matched
filter receiver. When the common receiver utilizes the linear
MMSE receiver, the SINR for the k-th secondary radio can
be characterized as [11]:

γMMSE
i (k) = A2

ks
T
k Σ−1

k sk =
A2

k

Ik
,

where Ik =
(
sT
k Σ−1

k sk

)−1
is the interference the k-th user

suffers from other secondary users and Σk =
∑

j �=k A2
jsjsT

j +
σ2I. Then, the TSG for the LMMSE receiver is the same as
(3).

In the following, we show that the TSG with the LMMSE
receiver also has a unique NE.

A. Existence of A Nash Equilibrium

Similar to the discussion in the section III-A, uk(A) is
continuous in A and quasi-concave in Ak. Also, since the
k-th user’s action set Āk is a closed and bounded interval,
it is a nonempty, convex and compact subset of R

1. Thus, at
least one Nash equilibrium exists in the TSG with the LMMSE
receiver.

B. Uniqueness of the Nash Equilibrium

To establish the uniqueness of the NE, we show that the
best response correspondence of the TSG with the LMMSE
is also a standard function.

Proposition 1 If two n × n matrices A and B are both
real, symmetric and positive definite, such that B − A ≥ 0
(i.e. B − A is positive semi-definite), then A−1 − B−1 ≥ 0.
In particular, when B − A > 0, than A−1 − B−1 > 0.

Proof:

B − A ≥ 0 ⇒ I − B− 1
2 AB− 1

2 ≥ 0.

Then,

0 < min {eig(B− 1
2 AB− 1

2 )} ≤ max {eig(B− 1
2 AB− 1

2 )} ≤ 1

⇔ 1 ≤ min
{

eig
(
(B− 1

2 AB− 1
2 )−1

)}
≤ max

{
eig

(
(B− 1

2 AB− 1
2 )−1

)}
< +∞

⇔ (B− 1
2 AB− 1

2 )−1 − I ≥ 0.

Hence we have

B
1
2 A−1B

1
2 − I ≥ 0

⇔ A−1 − B−1 ≥ 0.
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Similarly, when B − A > 0, the strict inequality can be
established.

From (6), the best response correspondence is:

A∗
k = rk(A) =

√
γT (k)
I−1
k

, ∀k ∈ K

where Ik =
(
sT
k Σ−1

k sk

)−1
.

Note that, if we let Σk =
∑

j �=k A2
jsjsT

j + σ2I, then
clearly Σk is symmetric. In the following, we show that the
best response correspondence of the TSG with the LMMSE
receiver is also a standard function.

1) positivity: From (6), since γT (k) > 0, the best response
correspondence satisfies the positivity condition.

2) monotonicity: For user k, ∀k ∈ K

rk(A) =

√
γT (k)

Ik(A)−1
,

and

rk(A′) =

√
γT (k)

Ik(A′)−1
,

where Ik(A) =
(
sT
k Σk(A)−1sk

)−1
.

If A ≥ A′, then Ak ≥ A′
k, ∀k = 1, 2, ...,K. Therefore,

Σk(A) − Σk(A′) =
∑
j �=k

αjsjsT
j ,

where αj = A2
j − (A′

j)
2 ≥ 0. Hence,

∑
j �=k αjsjsT

j is
positive semi-definite and symmetric. Thus, Σk(A) −
Σk(A′) ≥ 0.
Since Σk(A) and Σk(A′) are both real, symmetric and
positive definite matrices, from Proposition 1, we have
that

Σk(A′)−1 − Σk(A)−1 ≥ 0

⇔ sT
k Σk(A′)−1sk − sT

k Σk(A)−1sk ≥ 0

⇔ Ik(A′)−1 − Ik(A)−1 ≥ 0.

Hence, given the same γT (k),

rk(A) ≥ rk(A′).

3) scalability: For μ > 1 and ∀k ∈ K, let

Q1 =
∑
j �=k

μ2A2
jsjsT

j + σ2I,

and
Q2 =

∑
j �=k

μ2A2
jsjsT

j + μ2σ2I.

Then,

rk(μA) =

√√√√ γT (k)(
sT
k (

∑
j �=k μ2A2

jsjsT
j + σ2I)−1sk

)

=

√
γT (k)(

sT
k Q1

−1sk

) ,

and

μrk(A) = μ

√√√√ γT (k)(
sT
k (

∑
j �=k A2

jsjsT
j + σ2I)−1sk

)

=

√√√√ γT (k)(
sT
k (

∑
j �=k μ2A2

jsjsT
j + μ2σ2I)−1sk

)

=

√
γT (k)(

sT
k Q2

−1sk

) .

Clearly, Q1 and Q2 are both real, symmetric and
positive definite matrices. Furthermore,

Q2 − Q1 = (μ2 − 1)σ2I,

and since μ > 1, Q2 − Q1 is positive definite. Then,
according to Proposition 4.1, Q1

−1 − Q2
−1 is also

positive definite. Hence,

sT
k (Q1

−1 − Q2
−1)sk > 0

⇔ sT
k Q1

−1sk − sT
k Q2

−1sk > 0.

Thus,

μrk(A) =

√
γT (k)(

sT
k Q2

−1sk

)
>

√
γT (k)(

sT
k Q1

−1sk

)
= rk(μA).

Thus, the TSG with the LMMSE receiver is shown to
have a unique Nash Equilibrium. By using the round robin
best response algorithm, the game converges to this Nash
equilibrium.

V. SIMULATION RESULTS

We compare the performance of the MF and LMMSE
receivers in a network with 4 secondary users. Every user
can adapt its received signal amplitude in the region Āk =
[1, 10]mW. In Figs. 2 and 3, ρ = 0.1 and we have used dif-
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ferent noise levels in the simulation. These simulation results
show that with the LMMSE receiver, the game converges for
all users faster than that with MF under the best response
algorithm especially for high SNR values. Here, only the user
1’s convergence performance is plotted, since user 1 is the
last user that converges its action to the NE ( i.e. the game
converges only when the user 1’s action converges).
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Figure 4 shows that when achieving the same target SINR,
LMMSE receiver consumes less transmit power compared to
that of the MF receiver, which is an expected result due to the
superior interference suppression capability of the LMMSE
receiver.

In Fig. 5, we have shown the convergence performance with
different ρ values for the same target SINR of γMF

T (k) =
γMMSE

T (k) = 16. This comparison shows that with high
user cross-correlation, the TSG with the LMMSE receiver can
achieve the required target SINR. However, the TSG with the
MF receiver can perform poorly for high ρ values.

VI. CONCLUSIONS

In this paper, we generalized the target SINR game that is
previously defined with a MF receiver to a LMMSE receiver.
Our theoretical derivations and numerical results show that
there is a unique NE in the TSG with the LMMSE receiver.
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Fig. 5. ρ = 0.1 vs ρ = 0.8

When achieving the same target SINR, the LMMSE receiver
consumes less transmit power than that of MF at the NE,
which is expected. More importantly, our results show that
convergence time with the LMMSE receiver is less than that
with the MF receiver, and the effect is more profound in the
high SINR region.
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